
Dynamic Routing and Wavelength

Assignment in Networks with Wavelength

Conversion using Fast Learning Automata

and Deterministic Learning Automata

Ammar Muqaddas

ammar.mu@ku.edu.kw

Feb - 2019

This work is still incomplete.

Acknowledgment

Dr. Hamed Al-Azmi has collaborated with me on a DIFFERENT and improved version of

this paper. But since the work was never complete due to various reasons. I release this partial

paper WITHOUT including his contributions to the best of my knowledge. Still worm thanks

go to him for his valued help.

Simulation Tool

I’ve built my own simulation tool for this work. Called Hegons, A HEterogeneous Grooming

Optical Network Simulator. Supporting mixed routing & wavelength assignment algorithms

and optional wavelength conversions capability on each node. Link in reference [31]

Fast Learning Automata

In the following two sections we will illustrate two main problems that stand in the face of

learning automata’s success as a routing and wavelength assignment algorithm in converter

enabled optical networks. We will also propose two new algorithms trying to solve these

problems. Combining the two algorithms is what we call “FLA” which is our proposed

algorithm that we’re going to show the results for.

Non-Exhaustive Learning Automata (NXLA)

The use of learning automata (LA) in routing and wavelength assignment has shown

promising results [1]. However, in optical networks with nodes that have wavelength

conversion capability, the LA technique’s complexity and memory requirements grows

exponentially once 3 or more converter nodes are added to the network. The reason behind

this difficulty is as follows.

Learning automata (as described in [1]) considers all possible route/wavelength items and

associates a probability of selection for each combination item. But for networks with

wavelength converter nodes, the number of route/wavelength combinations multiplies

exponentially for paths (routes) that contain converter nodes. Figure 1 illustrates.

Figure 1, A and B are converter nodes. Numbers

on links indicate wavelength capacity

S

D

A

B

10
5

15

Suppose that a call arrives that needs a connection from node S to D. The only shortest path

available is S,A,B,D. Numbers on links indicate link capacities
*
. If nodes A and B had no

conversions capability then the maximum number of wavelengths that can be used on path

S,A,B,D is 5 (i.e wavelengths λ1, λ2, λ3, λ4, λ5) since link A,B has a capacity of 5. Hence, for

the LA algorithm, we have only 5 combinations (items) as shown in table 1.

Table 1: LA list

Path Wavelength Probability

S,A,B,D λ1 0.1

S,A,B,D λ2 0.4

S,A,B,D λ3 0.2

S,A,B,D λ4 0.1

S,A,B,D λ5 0.2

As shown, each of these combinations are associated with a probability of selection. These

probabilities are the values for w
r

ds

P
),(

mentioned in [1] that are updated by the LA algorithm as

described in the same paper. The probability values shown in table 1 (and all other tables) are

just for example. For the rest of this paper, we call all such tables an LA list. We also refer to

each row (RWA combination) as an LA item.

If node A was a converter node, the number of possible combinations will be 50 (105×) as

shown in table 2:

Table 2: LA list when A is a converter

Path Wavelengths Probability

S,A,B,D λ1 on link S,A and λ1 on links A,B and B,D 0.01

S,A,B,D λ1 on link S,A and λ2 on links A,B and B,D 0.02

S,A,B,D λ1 on link S,A and λ3 on links A,B and B,D 0.001

S,A,B,D λ1 on link S,A and λ4 on links A,B and B,D 0.09

…. …. ….

…. …. ….

S,A,B,D λ10 on link S,A and λ5 on links A,B and B,D 0.09

If nodes A and B both had conversion capability, then the number of combinations will be 750

(15105 ××). That’s only for 2 converter nodes with a single path. Having multiple paths and

more converter nodes will definitely cause the algorithm to consume huge amounts of

memory and extended computation time in order to store and compute selection probabilities.

*
 Link capacity is the number of wavelengths that this link can carry. Note that wavelengths (in our simulation)

are numbered from 0 upwards. For example, for link S, A. the wavelengths available are 0, 1, ,2…., 9

The exhaustive nature of the basic LA technique caused these difficulties. We intend here to

experimentally explore the benefits of applying a non-exhaustive LA algorithm. Instead of

considering all possible combinations in a single list of items, we propose creating multiple

lists, one for each non-converting sub-path (segment). In other words, we will divide the full

paths into segments that contain converting nodes only at their ending nodes. For our example

above, when A is a converting node and B is not. We will have the two lists shown in table 3

and table 4.

Table 3: LA list for segment S,A

Path Wavelength Probability

S,A,B,D λ1 on link S,A 0.05

S,A,B,D λ2 on link S,A 0.2

S,A,B,D λ3 on link S,A 0.15

S,A,B,D λ4 on link S,A 0.2

S,A,B,D λ5 on link S,A 0.05

S,A,B,D λ6 on link S,A 0

S,A,B,D λ7 on link S,A 0.1

S,A,B,D λ8 on link S,A 0.1

S,A,B,D λ9 on link S,A 0.15

S,A,B,D λ10 on link S,A 0

Table 4: LA list for segment A,B,D

Path Wavelength Probability

S,A,B,D λ1 on links A,B and B,D 0.5

S,A,B,D λ2 on links A,B and B,D 0.2

S,A,B,D λ3 on links A,B and B,D 0.2

S,A,B,D λ4 on links A,B and B,D 0.05

S,A,B,D λ5 on links A,B and B,D 0.05

When a new call arrives (from S to D), The LA algorithm is applied on the list in table 3 for

the segment S,A. If LA succeeds in finding an unused wavelength, the algorithm updates the

list in table 3 as described in [1]. Moving to segment A,B,D, the LA algorithm should be now

applied on table 4 trying to find an unused wavelength. If it succeeds again then table 4 is

updated for this success and the two wavelengths found are reserved for the call on their

corresponding segments. Finally, the connection starts. Note here that if at any step LA fails

in finding an unused wavelength, the call is blocked directly and the corresponding list (table

3 or table 4) should be updated for this failure.

Returning back to complexity measures, the total number of combinations now is only 15

(10+5). Similarly, if both nodes A and B were converter nodes, we would have 30 (10+5+15)

combinations. The number of combinations will simply grow linearly in this method. If more

than one paths existed from S to D (and we intend to use LA for routing), then we should have

created separate LA lists for each one of the other paths. Then create a parent LA list that is

used to choose the route for the incoming call using also the usual LA algorithm.

It should be pointed out here that we do not claim that a non-exhaustive method can replace

the exhaustive one with complete efficiency. What we are trying to do here is to study the

effect of neglecting the exhaustive combinations.

Call Setup Time in Learning Automata and Failure Negligence

The real-time (online) nature of the dynamic RWA problem in WDM networks requires

immediate responsiveness from the network when a call is requested. Stochastic learning

automata algorithms iterate indefinitely (choosing an item from a LA list probabilistically)

until a successful item is found, i.e an available RWA combination. This means that an

unsuccessful LA item might be selected multiple times before the algorithm finds a successful

item, which in turn can result in long call setup times and unnecessary added computation.

Although LA probabilities (w
r

ds

P
),(

) are being decreased for LA items that are found

unavailable which can lessen the chance that those items will be selected again, simulation

results show that relying only on this basic fact can still lead to lengthened call setup time
†
.

An efficient LA algorithm should be designed to totally avoid selecting unsuccessful list items

more than once while serving an incoming call. Simply marking the unsuccessful items will

not help allot since it will not stop the LA stochastic selector from choosing the same

unsuccessful item again and again. Figure 2 illustrates the difficulty.

0.14 0.07 0.22 0.097 0.011 0.05 0.091 0.091 0.23

A typical method for implementing LA works as follows. All the items of the LA list are laid

down in the interval [0,1] subdividing it into subintervals as shown in the example in Figure

2. Where the probability of each item determines the percentage of width that this item’s

subinterval occupies of the total width of the interval [0,1]. The order of the list items is not

important. A programmed random variable is implemented (via a random number generator).

The random variable should give values between 0 to 1 uniformly. At each LA iteration, a

new random value is given to the random variable. The list item that will be selected for the

iteration is the item that the random variable pointes inside it’s region (The gray region in

Figure 2). It should be clear by now that the random variable might choose the same item

more than once.

†
 Other stochastic RWA algorithms (such random RWA) also suffer from the same problem. For random RWA,

we need a similar but simpler approach as the one described here to avoid this problem.

RV = 0.52

Figure 2, Example of a random variable that chooses a value between 0 and 1. The

LA selection is the interval (rectangle) where the random variable hits, which is the

gray rectangle in this case. Numbers inside the rectangle indicate item probabilities.

(RV: Random Variable).

0 1 0.14 0.538 0.588 0.679 0.77 0.43 0.527 0.21

We propose the following modification. Assume the following definitions:

L: The maximum limit for the random variable were 10 ≤≤ L

RV: A real valued random variable were LRV ≤≤0

S: Size of the LA list. i.e number of items in the LA list.

f : The index for the first excluded subinterval in the full [0,1] interval.

a,ε : The convergence parameters mentioned in [1]. Where 0 < a < 1, 0 <ε < 1

FC: Failure constant. Which is equal to
1−S

ε

Note: We’re assuming that the first subinterval has an index of zero.

Initially (When a new call arrives), we set L=1 and set f = S. Once an LA item i with

probability Pi is selected and found unsuccessful. The usual updating of the LA list

probabilities is done. Then, the selected item’s subinterval will be excluded from further LA

selection by swapping this subinterval with the last unexcluded subinterval in the full [0,1]

interval. Then L will be decreased by a certain amount in such a way that RV (were LRV ≤)

is forced to give random values in the interval [0,L] were this interval is guaranteed to exclude

the failed selected item. In other words, the following LA iterations will produce RV values

that will never pick our excluded item again. Every time an item is excluded, f is decreased by

1. Once f = 0, we know that all items have been excluded and we can stop the LA search and

block the pending call. Other wise if a successful item is found before f becomes 0 we accept

the call allocating the route and wavelengths associated with the item. The following c-like

pseudo code provides the algorithms.

Structure La_item
struct la_item

{

 void *pitem;

 double probability;

};

Algorithm ChooseLAItem
Input: The LA list. Assumed here to be a global array of la_item structures called item[]

Output: The index of the item that is chosen by the LA algorithm
integer ChooseLAItem()

{

 double ran,d1;

 integer choice;

 ran = L*GenRand();
 choice = 0; d1 = item[0].probability;

 while (ran>=d1)

 { choice++;

 d1 = d1 + item[choice].probability;

 }

 return choice;

}

Algorithm NeglectFailedChoice
Input: The choice index that was returned by ChooseLAItem()

Output: Cast the failed choice at the end of the LA list and exclude it from further selection by

lowering L properly.

void NeglectFailedChoice(integer choice)

{

 la_item latemp;

L = (f-1)*FC+(1-ε)*L - item[choice].probability;

 // Swap newly excluded with last non-excluded

f--;
 latemp = item[choice];

 item[choice] = item[f];

 item[f] = latemp;
}

The function GenRand() generates random numbers in the interval [0,1]. The

ChooseLAItem() should be called on every LA iteration to choose the item. Then the item

should be checked wither it’s a success or failure, and accordingly, probabilities of all LA

items should be updated as in [1]. After this, In case the selected item was a failure,

NeglectFailedChoice() should be called.

A question remains, “How to decrease L ?”. At first, one might be tempted to assume that L

should be decreased an amount equal to the probability of the excluded item. Which is true.

But before doing so, we should realize that we have updated the probabilities of the whole LA

list
‡
. Which means that our previous L is not excluding the previously excluded items

correctly. The very definition of L imposes that it is a value that covers precisely the

unexcluded interval. Hence L is the total probability of all unexcluded items. In other words:

 ∑
−

=

=

1

0

][

f

i

iPL (1)

Where P[i] is the probability of item i. However, we will try here to calculate L in an efficient

manner. Referring to [1], probabilities should be updated as follows:

 (2)

][)1(][jPjP ε−=′ (2)

 jiiP
S

iP ≠∀−+
−

=′][)1(
1

][ε
ε

 (3)

Where j is the index of the item that has failed.][iP′ and][jP′ are the new updated

probabilities of items i and j respectively. So we can rewrite (1) as:

 ∑
−

=

′=′

1

0

][
f

i

iPL (4)

Where L′ is the updated value of L. Using (2) and (3)

‡ Decreasing the failed item and increasing all other items

][)1(][)1(
1

1

0

jPiP
S

L
f

ji

i

εε
ε

−+

−+
−

=′ ∑
−

≠

=

 (5)

⇒
][)1(][)1(

1

)1(1

0

jPiP
S

f
L

f

ji

i

εε
ε

−+−+
−

−
=′ ∑

−

≠

=

(6)

⇒ ∑
−

=

−+
−

−
=′

1

0

][)1(
1

)1(f

i

iP
S

f
L ε

ε
 (7)

Using (1), the term ∑
−

=

1

0

][

f

i

iP
 is equal to L (The previous value of L). Hence:

 L
S

f
L ⋅−+

−

−
=′)1(

1

)1(
ε

ε
 (8)

Equation (8) represents a more optimized method of calculation than (4). L′ is the corrected

value after updating the item probabilities. Now we can exclude the newly excluded item by

subtracting it’s updated probability][jP′ as follows:

][)1(
1

)1(
jPL

S

f
L ′−⋅−+

−

−
=′ ε

ε
 (9)

Which is the method we are using in NeglectFailedChoice() algorithm. An alternative

method is to update L only when we call ChooseLAItem() as shown bellow:

Algorithm ChooseLAItem2
Input: The LA list. Which is assumed to be a global array of la_item structures called item[]

Output: The index of the item that is chosen by the LA algorithm
integer ChooseLAItem()

{

 double ran,d1;

 integer choice;

 ran = L*GenRand();
 choice = 0; d1 = item[0].probability;

 while (ran>=d1)

 { choice++;

 if (choice>=f) { L=ran; ran = L*GenRand(); choice=0; d1=0; }
 d1 = d1 + item[choice].probability;

 }

 return choice;

}

The bold face line added above will do all updating for L. No need to update L in

NeglectFailedChoice(). This method exercises a trial and error technique. L is left unchanged

until it produces random values in the excluded interval, only then L will be changed. This

method can consume less computation time in some cases, like in high traffic demands were

the number of blocked calls (item failures) is large which results in NeglectFailedChoice()

being called so many times updating L repeatedly.

Least Used & Most Used Wavelength Assignment Revisited

Before we proceed with the results, we would like to clarify an inconsistency that we have

faced while observing the literature. In almost all papers that we have seen [2][3][4][5][6][7],

the definitions of the Least Used (LU) and Most Used (MU) wavelength assignment has been

similar to the following:

Least Used: Selects the wavelength that is currently the least used in the network.

Most Used: Selects the wavelength that is currently the most used in the network.

Both definitions (As has been explained by many papers) require global knowledge about

wavelength usage allover the network. In other words the network has to know in how many

links each wavelength is used anywhere in the network and provide such information to the

nodes in a distributed manner. However, there exists another uncommon definition for LU

and MU:

Least Used: Selects the wavelength that is currently used on the least number of links

in the path.

Most Used: Selects the wavelength that is currently used on the largest number of links

in the path.

Clearly, the two latter definitions differ from the former ones by the scope of the wavelength

counting. The former common definitions are global in the sense that they count the

wavelength usage through the whole network while the latter definitions are local since they

count only through the selected path. These two latter definitions appeared in a version of

paper [8]. However the newest version of [8] surprisingly reverts back to the two common

definitions we stated above.

For convenience, we have produced simulation results for both global and local versions of

LU and MU. For differentiation, we will refer to the localized versions as Localized Least

Used (LLU) and Localized Most Used (LMU). While the globalized versions will still have

the names LU and MU. A comparison between the two versions have never been presented in

the literature before. It turns out that LLU and LMU produce much better results than LU and

MU as shown in the following sections.

Simulation Results

We conduct our simulation using two different topologies. The 14 nodes NSFNET topology

and a 20 nodes randomly generated network topology. For the NSFNET we use the same

heterogeneous link capacities and call arrival rates mentioned in [1] (case 1). However, in

some scenarios, we ignored the heterogeneous link capacities and enforced homogenous

capacities with the same wavelength (W=50) all over the network. For the other 20 nodes

random network, links are distributed over 30% of the 20x20 possible source to destination

pairs. Where each link has a randomly generated capacity in the range 20 to 100 wavelengths

uniformly distributed over the links. Call arrival rates are also uniformly distributed random

integers in the range 0 to 10 calls/unit time. Each of the simulation runs were carried out for

1000 time units. Each simulation run is repeated for 10 batches and the average of the 10

results is our final result. As in [1] we use 1.0=α and 001.0=ε for LA algorithm.

Exhaustive LA vs. Non-Exhaustive LA
Using the NSFNET topology with two converter nodes (namely 4 and 7). Simulation memory

usage for both exhaustive LA (XLA) and the non-exhaustive LA (NXLA) described in section

#.# are shown in Figure 3. Figure 4 also shows the total computation time on a 2GHz PC. It is

clear from both figures that XLA is far more resource consuming and CPU intensive than

NXLA. Remember that this is when only 2 converter nodes are present. If more converter

nodes are deployed, XLA takes much more memory and CPU time and becomes totally

unfeasible for more than 4 converter nodes. While NXLA described in #.# scales linearly.

These results were all expected. But the

interesting results were the blocking

probabilities. As shown in Figure 5. The

new non-exhaustive LA gave lower

blocking probabilities than XLA in all

cases of different traffic loads. This is

probably due to long convergence time of

XLA because of the existence of a large

number of LA items in it’s LA lists. In

other words, it takes a long time for XLA to

figure out the optimum probabilities of it’s

LA lists simply because there are so many

items in the lists. However, this observation

needs further investigation and is out of the

scope of this paper.

For the rest of this paper, XLA is not used

any more. All LA algorithms shown are

non-exhaustive.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

NXLA XLA

M
e

m
o

ry
 (

M
B

)

Figure 3: Memory usage for NSFNET with 2 converter

nodes. (XLA: Exhaustive LA).

1.75

78

0

10

20

30

40

50

60

70

80

90

NXLA XLA

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

in
)

Figure 4: Computation Time in minutes for NSFNET

with 2 converter nodes. (XLA: Exhaustive LA).

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 3 6 9 12

Traffic Load Factor

B
lo

c
k

in
g

 P
ro

b
a

b
il
it

y

NXLA

XLA

Figure 5: Blocking probability for NSFNET with 2

converter nodes.

NXLA vs. FLA

As it has been mentioned above at the beginning of section #.#. Fast Learning Automata (or

FLA for short) is our proposed algorithm which combines the two methods mentioned in #.#

and #.#. Roughly speaking:

FLA ≡ NXLA + Failure Negligence algorithm

Figure 6 and 7 compare NXLA and FLA in both networks in terms of the Average Number

of Attempts a call takes before it finds an available RWA combination or fails the search and

gets blocked. The average number of attempts represents one of the measures for the calls

setup time. It can be seen from both figures that FLA outperforms NXLA in this measure.

Further more, Figures 8 and 9 show that FLA and NXLA are almost identical in terms of

blocking probability. FLA has slightly improved (lower) values in high load cases. Similar

0

20

40

60

80

100

120

140

160

180

200

1 3 6 9 12

Traffic Load Factor

A
v
.
N

u
m

b
e

r
o

f
A

tt
e

m
p

ts FLA

NXLA

Figure 6: Average Number of Attempts for NSFNET with

2 converter nodes.

0

50

100

150

200

250

300

1 3 6 9 12

Traffic Load Factor

A
v

.
N

u
m

b
e

r
o

f
A

tt
e

m
p

ts FLA

NXLA

Figure 7: Average Number of Attempts for the 20 nodes

network with 2 converter nodes.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 3 6 9 12

Traffic Load Factor

B
lo

c
k

in
g

 P
ro

b
a

b
il

it
y

FLA

NXLA

Figure 8: Blocking Probability for NSFNET with 2

converter nodes.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 3 6 9 12

Traffic Load Factor

B
lo

c
k

in
g

 P
ro

b
a

b
il
it

y

FLA

NXLA

Figure 9: Blocking Probability for the 20 nodes network

with 2 converter nodes.

results have been obtained for networks with 4 and 8 converter nodes. Fully converting

networks gave agreeing results as well.

Deterministic Learning Automata

Another problem in LA (even in FLA) that is not very apparent at first glance is the

computation time of the probabilities updating process. Remember that when LA chooses an

item from the LA list, and the item is tested wither it’s a success or failure. In both cases, the

probabilities of all the LA items in the list has to be updated properly. For a few tens of items

this should be no problem. But as the number of wavelengths per fiber increases in the near

future, The number of items must increase and the updating process will consume more CPU

time. Typical technologies can multiplex 40 or 80 wavelengths per fiber [9]. However, Recent

advances have reached 128,176,256 and 273 wavelengths per fiber [10] [11]. Furthermore,

research at the Bell Labs Innovations has demonstrated that the number of wavelengths in a

single fiber could be increased to 1000 [9].

Since LA is a probabilistic algorithm, the sum of all the probabilities of all the items has to be

equal to 1. And that is exactly the reason why all the probabilities of all the items have to be

updated (not only the checked item’s). We propose here a new simple algorithm (DLA:

Deterministic Learning Automata) that gives similar performance as LA in many cases

without the need to update any probabilities.

Instead of having a probability value for each item, DLA will have a counter for each item.

The counter simply counts how many times it’s corresponding item has succeeded through

out the whole history of the network. When a call arrives, DLA will choose the item with

highest counter first. If it fails, the next highest is chosen, and the next until it finds a

successful one, inform the network to use it and increase it’s counter by 1. Now, this

algorithm might sound more like the Most Used (MU) algorithm. But, in MU the counters are

decreased once the router and/or wavelength is released from the network. DLA never

decreases the counters. In other words MU chooses the most currently used item, while DLA

chooses the most successful item throughout the entire network history.

Programmatically speaking, a counter can not keep increasing infinitely. To solve this, in

DLA we occasionally subtract a constant value from all the counters to keep them from

overflowing. It’s obvious that this will not change the order of selecting the items. This

subtraction need NOT to be done very often since counters (in current programming

languages) can usually count upto very large number (2
32

-1 for a 32 bit counter). We also

define DLA to be a non-exhaustive algorithm in a network with converter nodes. Just as FLA

is, each non-converting segment will have a separate DLA list with it’s own items with their

counters.

Results and comparisons

We have done simulations for both networks using First Fit (FF), Random (Ran), Most Used

(MU), Least Used (LU), Localized Most Used (LMU), Localized Least Used (LLU)

wavelength assignment algorithms, To compare with LA and DLA. For routing, we used

Fixed Alternate Routing (FAR) which considers all shortest paths from each source to each

destination. However, The literature does not specify the order of FAR path selection if there

is more than one shortest path from a source to a destination. We use First Fit route selection

in the following subsection. We follow that with a subsection to show the results for the Least

Loaded Routing (LLR).

In addition to the blocking probability and average number of attempts, we also show results

of the variance in blocking probabilities. Remember that each source to destination pair have

their own local blocking probability which might differ significantly from the overall average

blocking probability. The variance is an indicator for the fairness of an RWA method.

Furthermore, results of the maximum blocking probability are shown which can help in

realizing the worst cases.

Figures 10,12 show average blocking

probability results for the NSFNET

without converter nodes. For the highest

traffic load factor 12, DLA achieves the

lowest result of 0.1792. Next comes

FLA with 0.1885, then LMU with

0.1893 followed by LU with 0.1901.

Lowering the load factor to 9 we see

that DLA is still holding first position

while LU comes in second. FLA comes

next followed by LMU. However, as the

load is decreased more, DLA falls back

giving marginally higher blocking

probabilities. On the other hand FLA

still gains lower values staying among

the three top algorithms.

In the next step, four randomly chosen

nodes in the NSFNET are made to be

converter nodes. Figure 11 illustrates

the results. DLA ranks first and FLA

second in both high load factors 12, 9. For

loads 1,3,6 again DLA draws back

performing poorly while FLA swaps in first

and second place with LU.

It is worth clarifying one important point

here regarding the performance of LU and

MU. LU has inherently performed poorly in

most references while MU has been noticed

as one of the best (if not the best) WA

algorithm. Results in figures 10,11 show the

complete opposite. This is due to the fact that

in the above results we are considering

heterogeneous link capacities (W is not

fixed) while most references consider

homogenous link capacities [12, 2, 14, 15,

16, 17, 21, 22, 23, 24, 25, 26, 27]. Few

0.00

0.05

0.10

0.15

0.20

0.25

Algorithm

B
lo

c
k
in

g
 P

ro
b
a
b
ili
ty

1 9.03E- 3.05E- 0 0 0 7.63E- 0 6.11E-

3 0.008 0.003 5E-04 2E-04 1E-04 7E-04 1E-04 4E-04

6 0.043 0.035 0.021 0.015 0.009 0.014 0.011 0.01

9 0.131 0.123 0.109 0.091 0.078 0.084 0.08 0.072

12 0.225 0.22 0.215 0.199 0.19 0.189 0.188 0.179

FF MU LLU Ran LU LMU FLA DLA

Figure 10: Blocking Probability for the NSFNET without

converter nodes.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Algorithm

B
lo

c
k
in

g
 P

ro
b
a
b
ili
ty

1 7.66E- 0 0 0 0 1.53E- 0 3.06E-

3 0.003 1E-04 0.001 8.87E- 5.66E- 3E-04 4.79E- 2E-04

6 0.025 0.012 0.02 0.009 0.007 0.009 0.008 0.007

9 0.092 0.08 0.087 0.068 0.061 0.064 0.061 0.055

12 0.19 0.19 0.186 0.177 0.171 0.17 0.169 0.161

FF LLU MU Ran LU LMU FLA DLA

Figure 11: Blocking Probability for the NSFNET with 4

converter nodes.

authors considered heterogeneous link capacities [1, 18, 19, 20]. Later results in section #.#

(Figure 24) show networks with homogenous link capacities, were indeed MU performs

efficiently and LU’s performance degrades as stated in most papers. This is an indicator of the

great sensitivity of WA algorithms to the link capacities in the network.

We suspect that MU works better for homogenous link capacities because it packs the usage

of the wavelengths more efficiently, trying the same wavelengths over and over so leaving all

free wavelengths untouched. But when link capacities heavily differ in the network, this

packing will not work since many wavelengths that are being used in high capacity links are

simply not available in lower capacity links (i.e higher indexed wavelengths). The most used

wavelengths will fail to be available so often. On the other hand LU will tend to use those

wavelengths since they are actually unusable in lower capacity links. This creates a tendency

to choose those higher indexed wavelengths for establishing short light paths which will free

more lower indexed wavelengths for longer light paths.

Despite MU's unsuitability in this case, it is rather surprising to see the interesting

performance of LMU in Figures 10 and 11. Which can raise questions about the behavior of

the two versions, which is a subject out of the scope of this work.

As for call setup time, Figure 13 shows the average number of attempts a call takes before it

finds an available RWA combination or fails the search and gets blocked. DLA and FLA gave

the best results for the high load factors 6, 9, 12 were LU ranked either in 4
th

 or 5
th

 place. For

load factor 3, DLA drops to 5
th

 place while FLA comes in 3
rd

. FLA drops to 4
th

 place for load

factor 1. Figures 13, 14 show further worst case and fairness indicators for convenience were

both FLA and DLA gave either best or comparable results.

Figures 16, 17, 18, 19 show the results for the NSFNET with 2 of the nodes working as

converter nodes. Again DLA performs best at high rates and FLA performs well but behind

LU which ranks 2
nd

. However, LU still suffers from the high Avg. number of attempts while

FLA competes neck to neck with Random WA on second place.

We can draw an initial conclusion here that DLA is best at high loads but it's performance

drops significantly at lower loads while FLA maintains a good to very good performance on

all loads.

FAR with different WA On NSFNET

0.00

0.05

0.10

0.15

0.20

0.25

1 3 6 9 12

Traffic Load Factor

FF

Ran

MU

LU

LMU

LLU

FLA

DLA

Figure 12: Blocking Probability for the NSFNET without

converter nodes.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 3 6 9 12

Traffic Load Factor

FF

Ran

MU

LU

LMU

LLU

FLA

DLA

Figure 13: Avg. number of attempts for the NSFNET without

converter nodes.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 3 6 9 12

Traffic Load Factor

FF

Ran

MU

LU

LMU

LLU

FLA

DLA

Figure 14: Maximum Blocking Probability for the NSFNET

without converter nodes.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

1 3 6 9 12

Traffic Load Factor

FF

Ran

MU

LU

LMU

LLU

FLA

DLA

Figure 15: Variance of node blocking probabilities for the

NSFNET without converter nodes.

0.00

0.05

0.10

0.15

0.20

0.25

1 3 6 9 12

Traffic Load Factor

FF

Ran

MU

LU

LMU

LLU

FLA

DLA

Figure 16: Blocking Probability for the NSFNET with 2

converter nodes.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1 3 6 9 12

Traffic Load Factor

FF

Ran

MU

LU

LMU

LLU

FLA

DLA

Figure 17: Avg. Number of Attempts for the NSFNET with 2

converter nodes.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 3 6 9 12

Traffic Load Factor

FF

Ran

MU

LU

LMU

LLU

FLA

DLA

Figure 18: Maximum Blocking Probability for the NSFNET

with 2 converter nodes.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

1 3 6 9 12

Traffic Load Factor

FF

Ran

MU

LU

LMU

LLU

FLA

DLA

Figure 19: Variance of node blocking probabilities for the

NSFNET with 2 converter nodes.

FAR with different WA on the random 20 nodes network
In all plots in this section, FLA-FLA represents combined routing and wavelength assignment

using LA. We have not shown FLA routing in the above simulations in order to emphasize on

the performance of FLA wavelength assignment alone and to give other algorithms a fair

chance to compete by having the same routing method applied to all algorithms. However,

using FLA routing combined with FLA WA will improve the performance significantly as

shown in figures 18, 19, 20, 21. FLA-FLA gave the best results in almost all cases. FLA,

DLA and LU achieved comparable results with some superiority for LU. However, LU took

more setup time in high loads.

It can be noticed here that the differences between RWA algorithms are minor.

0.00

0.05

0.10

0.15

0.20

0.25

FF MU LLU LMU Ran DLA FLA LU FLA-

FLAAlgorithm

B
lo

c
k
in

g
 P

ro
b
a
b
ili
ty

1 3 6 9 12

Figure 18: Blocking Probability for the 20 nodes network

without converter nodes.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 3 6 9 12

Traffic Load Factor

FF

Ran

MU

LU

LMU

LLU

FLA

DLA

FLA-FLA

Figure 19: Avg. Number of Attempts for the 20 nodes

network without converter nodes.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

FF MU LLU Ran LMU FLA DLA LU FLA-

FLAAlgorithm

B
lo

c
k
in

g
 P

ro
b

a
b
ili
ty

1 3 6 9 12

Figure 20: Variance of node blocking probabilities for the 20

nodes network without converter nodes.

0

5

10

15

2 0

2 5

3 0

3 5

4 0

FF Ran M U LU LM U LLU FLA DLA FLA -

FLA
A lg o rit hm

Figure 21: (At load factor 12). Avg. Number of Attempts for

the 20 nodes network without converter nodes.

FAR with different WA On NSFNET with homogeneous capacities (W=50)

When links have the same capacities, behavior of some of the RWA algorithms change

rapidly. In Figure 22, (aside from FLA-FLA's interesting performance) we can see that both

FLA and DLA performed only moderately in terms of the blocking probability. LU and LLU

gave the worst results while MU was the best after FLA-FLA. This confirms our notice earlier

in section #.# regarding homogenous and heterogeneous capacities and agrees totally with the

literature regarding the efficiency of MU. Performance of First Fit WA also improved. Figure

23 shows that FLA-FLA took the least average setup times in high load factors 6,9 and 12

while LU gave the least times for loads 1 and 3. Despite MU's interesting performance in the

blocking probability, MU took the longest average setup times in all loads.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

LU LLU Ran FLA LMU DLA FF MU FLA-

FLAAlgorithm

B
lo

c
k

in
g
 P

ro
b
a

b
ili
ty

1 3 6 9 12

Figure 22: (W=50). Blocking Probability for the NSFNET

with 4 converter nodes.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

1 3 6 9 12

Traffic Load Factor

FF

Ran

MU

LU

LMU

LLU

FLA

FLA-FLA

DLA

Figure 23: (W=50). Avg. Number of Attempts for the

NSFNET with 4 converter nodes.

0

5

10

15

20

25

30

35

40

45

FF Ran M U LU LM U LLU FLA FLA-

FLA

DLA

A lgorithm

Figure 24: (W=50, At load factor 12). Avg. Number of

Attempts at high load for the NSFNET with 4 converter

nodes.

LLR with different WA On NSFNET

It is well known that the Least Loaded Routing (LLR) is an innovative routing technique that

repeatedly produced competitive results. LLR has been defined in two differing flavors in

[28] and [29]. Both versions has been mentioned or adopted repeatedly [][][]. However, the

first version (although showed promising results) assumes a fully connected network
§
 which

isn’t always feasible in long-haul and metro networks. For instance, NSFNET is not fully

connected. We adopt the second version described in [29], the technique chooses the least

congested path among k shortest paths. The least congested path is defined as the path in

which it's most congested fiber link (i.e. the link that has the least number of unused

wavelengths) has the largest number of unused wavelengths in all such links in all k shortest

paths. The same paper also assumes that a least loaded wavelength assignment is to be used.

However, as the paper shows that for single fiber links (which is our case) the least loaded

WA reduces to a tie situation where it is assumed to behave as MU WA. In our simulation, we

use all other WA algorithms for convenience, not just MU. In Figure 25, we see that FLA-

FLA is no longer the best method in terms of blocking probability. However FLA and DLA

perform the best in most loads. This admittedly gives an indication that LLR produces less

blocking than FLA routing in this case. Figure 26 shows setup times were DLA excels at high

loads and FLA performs very good to moderate.

We should point out here that LLR demands online network state information [30]. Despite

the interesting setup times achieved as shown in Figure 26. LLR requires a pre-setup phase

were all link state information on all k shortest paths is collected (either using control

messages or querying a central database). Then LLR computes the minimum link capacity

over each path then sorts the paths in a descending order according to their congestion. On the

other hand FLA routing does NOT require network state information. Once a call has arrived

the LA list (which can reside on the source node memory) already have their pre-computed

probabilities.

§ Each source to destination pair of nodes must have a direct link between them.

0.00

0.05

0.10

0.15

0.20

0.25

FF LLU MU Ran FLA-

FLA

LU LMU FLA DLA

Algorithm

B
lo

c
k
in

g
 P

ro
b
a
b
ili

ty

1 3 6 9 12

Figure 25: (LLR) Blocking Probability for the NSFNET with

4 converter nodes.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 3 6 9 12

Traffic Load Factor

FF

Ran

MU

LU

LMU

LLU

FLA

DLA

FLA-FLA

Figure 26: (LLR) Avg. Number of Attempts for the NSFNET

with 4 converter nodes.

Load Factor

LLR with different WA On NSFNET with homogeneous capacities (W=50)

As in FAR case in section #.#, Figure 27 illustrates how MU and FF are two of the best

methods in reducing the blocking rates for homogeneous networks. However, MU and FF are

not designed to reduce setup time as shown in Figure 28 were they require a very high number

of call attempts on the average. In contrast, FLA and DLA which fall just behind MU and FF

with marginal differences in terms of blocking probability, do not exhibit such high setup time

requirement.

Effect of number of converters on RWA performance

In this section we vary the number of converter nodes in the network to see how adaptable

FLA and DLA are. LLR routing is used on NSFNET with the high load factor of 12. First the

simulation is done with no converter nodes. Then we pick a node at random to be a converter

node and we run the simulation again. Then we pick another node randomly again to be a

converter node (keeping the previous one as a converter) and run the simulation again. We

redo this process repeatedly until we have a network with all the nodes as converters. Figures

29 shows interesting results were DLA excels (since this is high load case) and FLA competes

with LU. As it is expected, for the fully convertible network case (14 converter nodes), all

WA algorithms gave exactly the same blocking probability. This is not a surprise since the

routing is fixed to LLR for all algorithms. Figures 30 shows results that speak for them selves

regarding setup time.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

LU LLU FLA-

FLA

Ran LMU FLA DLA FF MU

Algorithm

B
lo

c
k
in

g
 P

ro
b
a
b
ili
ty

1 3 6 9 12

Figure 27: (LLR, W=50) Blocking Probability for the

NSFNET with 4 converter nodes.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

MU FF LLU LMU FLA FLA-

FLA

DLA Ran LU

Algorithm

B
lo

c
k
in

g
 P

ro
b
a
b
ili
ty

1 3 6 9 12

Figure 28: (LLR, W=50) Avg. Number of Attempts for the

NSFNET with 4 converter nodes.

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Converter Nodes

B
lo

c
k
in

g
 P

ro
b
a
b
ili
ty

FF

MU

LU

FLA

DLA

Figure 29: (LLR, Load =12, Heterogeneous capacities)

Blocking Probability for the NSFNET.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Converter Nodes

B
lo

c
k
in

g
 P

ro
b
a
b
ili
ty

FF
MU
LU
FLA
DLA

Figure 30: (LLR, Load =12, Heterogeneous capacities) Avg.

Number of Attempts for the NSFNET.

[1] Anwar Al-Yatama, “Dynamic Routing and Wavelength Assignment Using Learning

Automata Technique”. Globcome 2004.

[2] Jun Zhou, Xin Yuan, “A Study of Dynamic Routing and Wavelength Assignment with

Imprecise Network State Information”.

[3] HUI ZANG, JASON P. JUE, BISWANATH MUKHERJEE , “A Review of Routing and

Wavelength Assignment Approaches for Wavelength Routed Optical WDM Networks”.

Optical Networks Magazine, January 2000.

[4] Dinh Thi Thuy Nga, Minho Kang, “An Online Wavelength Assignment Algorithm for

Optical Network”

[5] Xuehong Sun, Yunheo Lit, Ioannis Lambadarist and Yiqiang Q. Zhao. “Performance

Analysis of First-Fit Wavelength Assignment Algorithm in Optical Network”. 7th

International Conference on Telecommunications - ConTEL 2003.

[6] George N. Rouskas, “Routing and Wavelength Assignment in Optical WDM Networks”

[7] Wenhao Lin, Richard S. Wolff, Brendan Mumey, “A Markov-based Reservation

Algorithm for Wavelength Assignment in All-optical Networks”

[8] Yuhong Zhu, George N. Rouskas, Harry G. Perros, “A Comparison of Allocation Policies

in Wavelength Routing Networks”

[9] What is WDM technology? http://www.spie.org/web/oer/november/nov00/wdm.html.

[10] http://www.tycotelecom.com/AboutUs/HistoryTelecom.asp

[11] http://www.burtongroup.com/promo/columns/column.asp?articleid=67&employeeid=56

[12] Ahmed Mokhtar, and Murat Azizoğlu, "Adaptive Wavelength Routing in All-Optical

Networks"

[13] John Strand, Robert Doverspike, Guangzhi Li, "Importance Of Wavelength Conversion

In An Optical Network"

[14] Abdelhamid E. Eshoul and H. T. Mouftah, Fellow, IEEE, "IFF: A NOVEL

WAVELENGTH ASSIGNMENT SCHEME FOR WDM OPTICAL NETWORKS"

[15] Cheng Xiao-fei, Lin Mian-feng, Gu wan-yi, "Wavelength Assignment for Dynamic

Traffic in WDM Optical Networks". Journal of Optical Communications 2004.

[16] Djuana Pigford Lea, "SOFT COMPUTING APPROACHES TO ROUTING AND

WAVELENGTH ASSIGNMENT IN WAVELENGTH-ROUTED OPTICAL NETWORKS".

[17] I-Shyan Hwang, I-Feng Huang, Shin-Cheng Yu, "Dynamic RWA scheme using fuzzy

logic control (FLC RWA) on IP over GMPLS with DWDM networks"

[18] Ralf Hülsermann, Monika Jäger, Sven O. Krumke, Diana Poensgen, Jorg Rambau,

Andreas Tuchscherer, "DYNAMIC ROUTING ALGORITHMS IN TRANSPARENT

OPTICAL NETWORKS"

[19] J. Yates, M. Rumsewicz and J. Lacey, "Wavelength Conversion in Networks with

Differing Link Capacities," IEEE GLOBECOM"

[20] Y. Zhu, GN Rouskas, and HG Perros, "A Comparison of Allocation Policies

inWavelength Routing Networks".

[21] Esa Hyytiä, Jorma Virtamo, "Dynamic Routing and Wavelength Assignment Using First

Policy Iteration"

[22] Bo Wen, Krishna M. Sivalingam , "Routing, Wavelength and Time-Slot Assignment in

Time Division Multiplexed Wavelength-Routed Optical WDM Networks"

[23] Xi Wang, Hiroyuki Morikawa, and Tomonori Aoyama, "Priority-based Wavelength

Assignment Algorithm for Burst Switched WDM Optical Networks".

[24] S. Subramaniam, M. Azizoglu, and A. K. Somani, “Connectivity and Sparse wavelength

Conversion in Wavelength-Routing networks”, in IEEE/ACM Journal of Networking, Vol. 4,

No. 4, August 1997.

[25] S. Subramaniam, A. K. Somani, M. Azizoglu, and R. A. Barry, “The Benefits of

Wavelength Conversion in WDM Networks with Non-Poisson Traffic”, in IEEE

Communications Letters, 1998, Vol. 3, No. 3, March 1999.

[26] Ahmad, J. Zaidi, S.M.H. Nawaz, S. “Dynamic routing in wavelength convertible WDM

networks”.

[27] Xiaowen Chu, Bo Li, Zhensheng Zhang , “A Dynamic RWA Algorithm in a

Wavelength-Routed All-Optical Network with Wavelength Converters”

[28] A. Birman, “Computing approximate blocking probabilities for a class of all-optical

networks”. INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE. March 1999.

[29] E Karasan, E Ayanoglu, “Effects of Wavelength Routing and Selection Algorithms on

Wavelength Conversion Gain in WDM Optical Networks”. IEEE/ACM Transactions on,

1998.

[30] G. Maier, A. Pattavina, L. Barbato, F. Cecini, M. Martinelli, "Routing Algorithms in

WDM Networks under Mixed Static and Dynamic Lambda-Traffic". Photonic Network

Communications Journal, Volume 8, Number 1 / June, 2004

[31] Link to Hegons simulator. http://www.solostuff.net/hegons/

