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Introduction 
If you’re here you probably know what I’m talking about. So you’ve tried the famous 

RBJ cookbook filters, or you’ve designed filters using pole-zero analyses. All good, 

but whenever you try to modulate the cutoff at audio rate of any of these filters, it 

explodes!! Causing a numerical overflow. You recheck your coefficients, stability and 

all that. You check your code. All seams to be good. And yet, no good. 

 

After long hours, you admit to your self and give up on the math. Now you try to just 

clip the output of the filter internally and hope some thing musical would come out 

when it blows. And your ears are barged with those untamable noisy resonations 

beeping sporadically all over the spectrum. It’s just baaaad. Ugly, ugly as hell. Hell 

would run away if it heard that. 

 

In this article I try to shed some light over the subject of fast modulation of filter 

parameters. Why do supposedly stable filters explode? And what to do about it. With 

a bit of experimentation, specially in the first section. 

 

The next three sections describe three different methods for designing filters that can 

withstand fast modulation without exploding. The fourth section is complementary 

providing a proof for the stability of the CPS method described in section 2. 

 

Prerequisites 
You are expected to know at least basic DSP and filter design concepts to understand 

this article. At least you should have used filter code before. You know what’s a pole 

and what’s a zero. You know whats a Z-plane and an S-Plane. You know what’s a 

transfer function. 

 

1. Zero Delay Feedback (ZDF) filters 
Probably the definitive guide for the design of ZDF filters is the book named “The Art 

of VA Filter Design”. 

 

ZDF is actually the popular common name. A more accurate name would be to name 

it after the methodology defined in the book, which is called Topology Preserving 

Transform (TPT). But more on that latter.  
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So lets pinpoint some of the usually said advantages of ZDF (or TPT) filters and what 

I think really matters the most. 

 

1. Cut-off and resonance are independent. True, but good none ZDF filters 

can do that too. Try RBJ cookbook. For other filters, the claimed increase in 

resonance that happens usually near high frequencies is caused by the two 

poles bellow and above nyquist becoming too close together. One can manage 

that simply by placing zeros at nyquist. Actually some ZDF filters them selves 

have zeros at nyquist. 

2. Analog Sounding. Sure enough, ZDF filters are based on idealized analog 

topologies. Well, It’s not accurate component modeling, but still. However, 

the thing is, as a sound designer or musician, one may like to have that as an 

option not as a must. It’s arguably a flavor, not better or worse. 

3. Stable fast modulation of filter cutoff and resonance. Yes, this is where I 

think ZDF really shines. It is an indispensable feature. Many other filters 

(when done the classical way), just can’t cope with fast modulation. We will 

further show how to fix this in those filters too. 

 

Ok, let me first brief you on the gist of what the above book and this ZDF business is 

all about. 

 

1. Analog filters use integrators to achieve the filtering. Those integrators are 

electrical components (mainly capacitors) that integrate the incoming signal. 

Literally, integrate like in math. So you would pass say a square wave through 

it and out goes a triangle!!. How cool is that. 

 

2. Connecting those integrators with feedback loops in various ways you can 

achieve a very wide variety of useful filters. 

 

3. We can digitize these analog filters by replacing those analog integrators with 

digital equivalents. There are various methods to do so. The book (mentioned 

above) suggests using some thing called Trapezoidal Integrators. 

 

4. The time domain function for this trapezoidal integrator takes the following 

form: 

 

)tan( cwg ⋅= π  (1) 

]1[][][ −+⋅= tmtingtout  (2) 

][][][ touttingtm +⋅=  (3) 

 

 

where m is a state (memory) variable that lives through the previous clock tick. 

Out and in are obvious. wc is 
s

c

f

f
(cutoff frequency over sampling rate) where 

wc<0.5. g is a gain amount that is directly proportional to the wc frequency chosen.  

 

5. The integrator above approximates what happens with analog integrators. The 

tan() is a fix actually for a warping (squeeze) that happens to the frequency 

spectrum. Without it, if you shoot for a frequency fc the result will be fc minus 
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something. So it’s basically a correction that is required because the integrator 

above squeezes the whole analog frequency spectrum from 0Hz to ∞Hz and 

puts it between the digital spectrum 0Hz to nyquist (0 to half the sampling 

rate). As g=tan(…), One may think of g as a frequency amount. You might 

actually see g referred to as wc , w or f in some references or books. It’s 

confusing some times so watch it. 

 

6. Take the output and memory equations directly from the analog topology. The 

book calls this method a Topology Preserving Transform (TPT). (I’m going to 

use the TPT name instead of ZDF from now on). Have a look at the following 

state variable filter topology.  

 

 
Figure 1 

 

Were R is −1 resonance while resonance is between 0 to 1. In-place of the integrators 

shown, you put the trapezoidal integrator formula (2) shown above. Then derive LP, 

HP and BP output directly from the topology. (Circle with a plus is a sum and triangle 

is a multiply). Doing this you’ll get the following: 

 

( )][][2][][ tlptbpRtinthp +⋅−=  (4) 

]1[1][][ −+⋅= tmthpgtbp  (5) 

]1[2][][ −+⋅= tmtbpgtlp  (6) 

 
m1 and m2 here are the state (memory) variables for the two integrators. Both were 

calculated during the previous clock tick. After using them, we need to calculate their 

values to be used for the next clock tick. We get those from (3) above. 
 

][][][1 tbpthpgtm +⋅=  (7) 

][][][2 tlptbpgtm +⋅=  (8) 

 

We’re done, but there is a slight problem. Notice in (4) (5) and (6). HP, LP and BP are 

all expressed in terms of each other (i.e. implicitly). This is the result of the Zero 

Delay Feedback problem (Yes it’s a problem, not actually a name for the filter type. 

But the public seams to have adopted that as a name). It happens because we have no 

memory elements in the feedback path between LP and the input (check the 

topology).  

 

But actually solving this problem is easy. We need to solve the three equations (4) (5) 

and (6) to evaluate HP in terms of m1, m2, R and g ONLY. Once we’ve done that, we 

can use (5) to get BP and then (6) to get LP (use your favorite symbolic math tool, 
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Mathematica, SageMath etc…). After doing all that and summoning everything, 

you’ll get this final working code. 
 

g = tan(PI * wc); 
hp = (in-(g + 2*R)*m1 - m2)/(g*g + 2*g*R + 1);  

bp = g*hp + m1;  

lp = g*bp + m2; 

m1 = g*hp + bp;  

m2 = g*bp + lp; 

 

I’m sure you can optimize this a bit further. This filter can handle very fast audio rate 

modulation of the cutoff (and resonance as far as I can test). If you came here only for 

this, I don’t blame you. 

 

Exposing the guts  

All good and dandy. Now here is the thing. All we did above we did in the time 

domain. Replacing the analog integrators with digital approximations. What if we 

wanted to do the same thing but in the frequency Z domain instead. That is, figure out 

the transfer function of the topology in the analog frequency S domain then digitize it 

to the Z domain. How would that go? Do you think the result would also stand up for 

fast modulation? It should right? Lets check that. (Experts, Thinking “no, no, no it has 

to be time invariant”. Ok just hold on for moment). 

 

Lets find the transfer function of the topology. An analog integrator in the frequency 

S domain has the transfer function
s

g
. It has a pole at frequency 0Hz and a zero at 

∞Hz (you’d usually see this as s=j0 and s=j∞. Weird notation? I know. It’s just that 

frequencies are expressed in the imaginary axis in the S-plane. The Z-plane is 

different, (don’t confuse). 

 

Deriving the HP, BP and LP from the topology will give us: 

 

LPBPRinHP −⋅−= 2  (9) 

HP
s

g
BP =  (10) 

BP
s

g
LP =  (11) 

 

Eliminate HP and BP and solve for 
in

LP
and you’ll get the transfer function of LP.  

22

2

2
)(

gsgRs

g

in

LP
sH

+⋅⋅+
==  

(12) 

 

We could also do the same for HP and BP, But lets just stick with LP. Now we’ll 

digitize it. By moving it from the S domain to the Z domain. Doing this, we’ll have to 

approximate the 
s

g
integrator with the Z domain transform of the same trapezoidal 
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integrator above (1)(2)(3). Without too much detail, we do this by doing the following 

substitution: 

1

1

1

1
2

−

−

+

−
=

z

z
s  (13) 

 

This has a name. It’s called the Bilinear Transform (Or Tusten in MatLab). Make no 

mistake about it. It is a direct result of the trapezoidal integrator above. So after the 

substitution we have: 

 

2

1

1
2

1

1

2

1

1
22

1

1
2

)(

g
z

z
gR

z

z

g

in

LP
zH

+
+

−
⋅⋅+









+

−
==

−

−

−

−
 

(14) 

 

Putting it in polynomials forms: 

 

( )
( ) ( ) 22122

212

448244

21
)(

−−

−−

⋅+⋅−+⋅−++⋅+

++⋅
==

zggRzgggR

zzg

in

LP
zH  (15) 

 

Multiplying by the denominator and transforming this to the time domain (Inverse Z 

transform). 2−LPz tranforms to lp[t-2]. 1−LPz  tranforms to lp[t-1] and 0LPz  to lp[t]. 
2−⋅ zin  to in[t-2], 1−⋅ zin to in[t-1] and 0−⋅ zin to in[t]. 

 

( ) ( ) ( )
2

222

44

]2[44]1[82]2[]1[2][
][

ggR

tlpggRtlpgtintinting
tlp

+⋅+

−⋅+⋅−−−⋅−−−+−⋅+⋅
=  (16) 

Notice here that this is essentially direct form 1 except that we factored 
244

1

ggR +⋅+
 

out, Direct form 1 is presumably the most numerically stable form of all the well 

known forms. (If you don’t know what I’m talking about, just continue to see where 

I’m heading with this. The big picture is more important than the details here). 

 

Now we’ll put that in code. 

 
/* in0 is the current input sample (i.e in[t]). 

lp0 is the current output sample (i.e lp[t]) 

in1, in2, lp1, lp2 are state (memory) variables. (i.e in[t-1],in[t-

2], lp[t-1], lp[t-2] 

*/ 

g = tan(PI * wc); 
temp = 4+4*R*g+g*g; 

lp0 = (g*g*(in0+2*in1+in2) – (2*g*g-8)*lp1 – (4-4*R*g+g*g)*lp2)/temp; 

in2 = in1; in1 = in0; 

lp2 = lp1; lp1 = lp0; 

 

Try it, it should work. But now try it with fast audio rate modulation. And……It 

Explodes!! Surprised? I’ll be surprised if your not. This code came from the transfer 

function of the exact same topology that worked before using the exact same 

integrator. Just done in a different method. Yet one of them is stable the other is not at 

high rate modulation. How is that possible?! What do you think went wrong here? 
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The reason the above didn’t work is because the transfer function that we derived 

does not apply here because the system becomes a Time Variant system when 

modulation is applied; therefore the derivation above is not valid. A Transfer function 

only works when we have a Linear Time Invariant (LTI) system. A modulated filter is 

not LTI. 

 

Lets try a different way. What if we do it in the time domain? Completely avoiding 

the transfer function. In other words, I want to get some thing like this: 

 

]2[]1[]2[]1[][][ 21210 −−−−−+−+= tLPatLPatinbtinbtinbtLP  (17) 

 

That is, get the LP output only in terms of current and past input and output, just like 

Direct form 1. But do it all in the time domain. Is this even possible? Lets get back to 

our original 5 equations we got straight from the topology (4)(5)(6)(7)(8). I’m going 

to write the exact same equations three times, one exactly as above, one for the 

previous time sample and one before it. (i.e. [t], [t-1] and [t-2]). BUT I’m going to 

also account for changes in cut-off and resonance across the 3 time/samples (i.e. g is 

going to be g[t], g[t-1], g[t-2] and R is going to be R[t], R[t-1], R[t-2]) 

 

 

( )][][][2][][ tlptbptRtinthp +⋅−=  (18) 

]1[1][][][ −+⋅= tmthptgtbp  (19) 

]1[2][][][ −+⋅= tmtbptgtlp  (20) 

][][][][1 tbpthptgtm +⋅=  (21) 

][][][][2 tlptbptgtm +⋅=  (22) 

 

 

( )]1[]1[]1[2]1[]1[ −+−⋅−−−=− tlptbptRtinthp  (23) 

]2[1]1[]1[]1[ −+−⋅−=− tmthptgtbp  (24) 

]2[2]1[]1[]1[ −+−⋅−=− tmtbptgtlp  (25) 

]1[]1[]1[]1[1 −+−⋅−=− tbpthptgtm  (26) 

]1[]1[]1[]1[2 −+−⋅−=− tlptbptgtm  (27) 

 

( )]2[]2[]2[2]2[]2[ −+−⋅−−−=− tlptbptRtinthp  (28) 

]3[1]2[]2[]2[ −+−⋅−=− tmthptgtbp  (29) 

]3[2]2[]2[]2[ −+−⋅−=− tmtbptgtlp  (30) 

]2[]2[]2[]2[1 −+−⋅−=− tbpthptgtm  (31) 

]2[]2[]2[]2[2 −+−⋅−=− tlptbptgtm  (32) 

 

 

These are 15 equations. Use your favorite symbolic solver to get lp[t] in terms of past 

lp[], and past and current in[], g[] and R[] eliminating all other terms. You’ll get the 

following hideous thing: 
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This is the correct time variant formula that the transfer function method missed. And 

it actually works at fast rate modulation (well it should). Obviously, no one in his 

sanity would use such a CPU hog for any thing other than experimentation. But if you 

insist on trying it for your self here is the code. Just bear in mind here that because of 

the numerical complexity, this can cause 0/0 division which will cause a NAN to 

occur. 

 
// Initialize to avoid NAN 

g1 = 0.5; g2 = 0.5; R1 = 0.5; R2 = 0.5; 

 

// One sample Tick (below) 

g = tan(PI * wc); 
lp0 = -(g*g*g1*in0 + g*g1*g1*in1 - (2*g*g1*R1 - (2*g*R + 1)*g1 - 

g)*g2*g2*in2 - 2*g*g1*lp1*R1 + (g*g*in0 + ((2*g*R + 1)*g1*g1 + 

2*g*g1)*in1 - ((2*g*R + 1)*g1*g1 + 2*g*g1 - 2*g*R - 1)*lp1 + 

2*(g*g*g1*in0 + (2*g*R + 1)*g1*lp1)*R1)*g2 - (g*g1*g1 - 2*(2*g*R + 

1)*g1 - g)*lp1 + ((2*g*g1*R1 - (2*g*R + 1)*g1 - g)*g2*g2 + 2*g*g1*R1 

- (2*g*R + 1)*g1 - g)*lp2 - 2*((2*g*g1*R1 - (2*g*R + 1)*g1 - 

g)*g2*lp2 + (g*g*g1*in0 + g*g1*g1*in1 - 2*g*g1*lp1*R1 - (g*g1*g1 - 

2*(2*g*R + 1)*g1 - g)*lp1)*g2)*R2)/(2*(g*g + 2*g*R + 1)*g1*g2*R2 - 

(g*g + 2*g*R + 1)*g1 - (2*(g*g + 2*g*R + 1)*g1*R1 + g*g + 2*g*R + 

1)*g2); 

if (_isnan(lp0)) lp0=1; // NANs can occur 

g2 = g1; g1 = g; 

R2 = R1; R1 = R; 

in2 = in1; in1 = in0; 

lp2 = lp1; lp1 = lp0; 

 

 

Despite it’s uselessness. The above huge thing verifies a few points. 

 

1. Stability at fast rate modulation has nothing to do with the filter structure or 

form used being zero delay feedback. There is an obvious one sample and two 

sample delay feedback (lp[t-1] and lp[t-2]) above. Yet it’s stable at fast rate 

modulation. 

2. TPT is sufficient but not necessary to achieve stability in fast modulation. The 

complex form above is obviously nothing similar to the original analog 

structure, although it was derived from it. The integrators and their 

state/memory variables have been completely removed. Yet it’s stable. 
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3. The really nice thing about the TPT (or ZDF) method is how it completely 

embeds all past cutoff and resonance (g and R) information in the memory 

variables (m1 and m2 in our case). Needing nothing but the current g and R 

for the current time/sample calculation. 

 

Another advantage of TPT filters is that there is a wealth of history behind analog 

filters that one could bring directly into the digital form without needing to reinvent 

allot of wheels.  

 

2. Arbitrary filter design using Pole-Zero analysis 
The main advantage of Pole-Zero filter design is the clear and direct ability to place 

every pole and zero exactly where you want in the frequency spectrum. Doing so, you 

can achieve practically any bespoke filter or phase shifter without relying on analog 

structures. 

 

In Pole-Zero analyses you start by placing whatever poles and zeros you want on the 

Z-Plane. Then derive the transfer function from there, and then transform to time 

domain and so get your code. Any instability problems we have with fast modulation 

or without modulation are due to the poles not zeros. Without modulation, stability 

can be insured by simply keeping all poles inside the unit circle. But with modulation, 

it becomes more complicated. So lets see the simplest 2-pole no-zero filter we can 

have. (I can do 1-pole but these will have no resonance parameter. It’s not very useful 

for typical usage). 

 

The Z-plane plot and frequency response of a 2-pole no-zero filter is shown below. X 

shown in the Z-plane denotes the two conjugate pair poles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 
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Transfer function: 

( )( ) ( )( )11 1

1

1

1
)(

−− ⋅+−
⋅

⋅−−
=

zjyxRzjyxR
zH  (33) 

 

 

Which can be simplified as: 

 

22121

1
)(

−− +⋅⋅−
=

zRzxR
zH  (34) 

 

R is the resonance or more accurately, the radius in this case (distance from origin to 

the pole in the Z-plane. See figure.). )2cos( cwx ⋅= π  and )2sin( cwy ⋅= π  where cw is 

as defined above. i.e. 
s

c

f

f
(cutoff frequency over sampling rate).  I’m going to assume 

that you know what I’m talking about here. 

 

The above is very raw, it’s not normalized nor adapted well for good sound. But it’s 

best for simplicity. Getting the time domain formula (using the inverse Z-transform as 

we did before).  

 

]2[]1[2][][ 2 −−−⋅⋅+= toutRtoutxRtintout  (35) 

 

As you would expect if you’d use this filter while modulating the cutoff very fast it’ll 

explode. For the same reason we talked about above. The transfer function is NOT 

valid while modulating the filter parameters because the system becomes time variant. 

In otherwords, the formula above should involve current and past cutoff and 

resonance information (at least for t-1 and t-2). So what can we do about this?  

 

Complex 1-Pole Sections (CPS) Stabilizer 

What if we managed to put the time domain system in the following form: 

 

∑
=

+−⋅+⋅=
n

k

kk ktmctinctout
2

1 ]1[][][  (36) 

 

Such that all kc are coefficients expressed only in terms of current cutoff and 

resonance (R[t], x[t] and y[t]). And all 
km  are state/memory variables that embed the 

complete previous state of the filter including it’s past cutoff and resonance 

information. Similarly: 

 

∑
=

+−⋅+⋅=
n

k

kkiii ktmdtindtm
2

,1, ]1[][][  (37) 

 

Where all kid ,  are coefficients, again expressed only in terms of current cutoff and 

resonance (R[t], x[t] and y[t]). If we can achieve this, we have solved our time variant 

system. 
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As far as I can see, it’s a design problem that can have many solutions. (If your head 

has started to spin. Never mind. The above is just a generalization/formularization of 

the problem we have). Now one may argue that because this is a second order system, 

we only need two state/memory variables. Well, yes but that is only guaranteed if we 

have no restriction on the coefficients (i.e. being expressed only in current cutoff and 

resonance). Which is not the case here. Hence, we have to extend until n number of 

state variables. Where n is something that we need to find out. 

 

There is actually an easy way to resolve the problem. Although I can’t see it 

mentioned or proved anywhere
1
. By splitting the transfer function into it’s original 

cascade of Complex 1-Pole Sections (CPS). Exposing it’s conjugate pairs. In other 

words, we’ll use (33) instead of (34). Here it is again: 

( )( ) ( )( )11 1

1

1

1
)(

−− ⋅+−
⋅

⋅−−
=

zjyxRzjyxR
zH  

 

Getting the time domain form of the first (left) cascade: 

 

( )]1[]1[][][ 111 −⋅−−⋅+= timytrexRtintre  (38) 

( )]1[]1[][ 111 −⋅+−⋅= treytimxRtim  (39) 

 

Where ][1 tre  is the real part and ][1 tim  is the imaginary part. Feeding it into the 

second (right) section.  

 

( )]1[]1[][][ 2212 −⋅+−⋅+= timytrexRtretre  (40) 

( )]1[]1[][][ 2212 −⋅−−⋅+= treytimxRtimtim  (41) 

 

But we know already that the imaginary part of the second section MUST be equal to 

zero since the conjugate pair cancel each other imaginary parts. This leaves us with: 

 

( )]1[][][ 212 −⋅+= trexRtretre  (42) 

0][2 =tim  (43) 

The output of the whole system is in ][2 tre . So basically we can just write: 

 

( )]1[][][ 1 −⋅+= toutxRtretout  (44) 

 

With some manipulation one can easily show that the above form can be expressed in 

the generalized form proposed in (36) and (37). 

 

Final 2-pole no-zero filter code: 

 
// in0 is the current input (in[t]), out0 is the current output 

                                                 
1
 Fortunately. it seams that a similar method has actually been suggested and used before by Max 

Mathews, in his paper “Methods for Synthesizing Very High Q Parametrically Well Behaved Two Pole 

Filters”. Albeit being named differently as “Phasor Filters”. A brief discussion of stability can be found 

in the paper called “Dynamic FM synthesis using a network of complex resonator filters”. Named here 

as “Complex Resonators”. At the time of writing this article, I had no knowledge of those papers. 
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// re, im and out0 are state/memory variables. 

 
x = cos(2.0*PI*wc); y = sin(2.0*PI*wc); /* Or we can use: y=sqrt(1.0-

x*x); same thing */ 

// Section 1 

temp = re; 

re = in0 + R*(x*re - y*im); 

im = R*(x*im + y*temp); 

// Section 2 

out0 = re + R*(x*out0); 

 

This is stable at fast modulation as far as my tests go. I do provide an elaborate proof 

for its stability in the last section of this article. 

 

Try it, but don’t expect good sound. For a properly designed say low pass filter we 

need some more work which is shown in the next section.  

 

Using the CPS method described above one can stabilize practically any n-pole m-

zero filter by cascading multiple CPS sections. Notice that in the special case of 

strictly real poles, this would be just a special case of the CPS where the imaginary 

part is y=0.  

 

Low pass 2-pole 2-zero filter 

Note: it is very common among designers to omit specifying the number of zeros in a 

filter. I just specify it here for extra clarity. So don’t be confused when you see many 

filters out there saying like 2-pole or 4-pole. They also usually have zeros. But that’s 

not always true of-course. Which may add to the confusion. 

 

I’m going to briefly describe an LP design that’s originally NOT stable at fast 

modulation then make it stable by applying the simple CPS method I showed above. 

Notice here that in both TPT and pole-zero you can get high audible gain if the 

resonance is very high in fast modulation. But they won’t explode. Experimenting 

with soft clipping can be interesting here. In fact, clipping is inherent in analog filters 

because each power supply has limits to the voltage is can produce. 

 

So here it goes. 

 

1. Looking at the two pole transfer function in (34). We’ll use that and add two 

zeros at nyquist. Why? Because you won’t have a low pass without them. You 

need something to attenuate higher frequencies. This will give you the 

following: 

221

21

21

21
)(

−−

−−

+⋅⋅−

++
=

zRzxR

zz
zH  (45) 

 

2. We’ll normalize (force) the gain at 0Hz (z=1) to be 0db. Why? Because if we 

don’t, then the fundamental (lowest) frequency of your input may get 

amplified or attenuated. You don’t want a lowpass to do that right?  
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








 +⋅−
=

4

21
2

0
cc RxR

b  (46) 

221

21

0
21

21
)(

−−

−−

+⋅⋅−

++
⋅=

zRzxR

zz
bzH  (47) 

 

3. The filter above works but still won’t completely close at low cutoff and 

resonance. I’m going to steal something from RBJ to redefine the resonance. 

And with some intuition we can remap R to get a better response: 

 

1100 3 += Rc  (48) 

yc

c
Rc

+
=  (49) 

Where y is as defined above. And the final transfer function is: 

 

221

21

0
21

21
)(

−−

−−

+⋅⋅−

++
⋅=

zRzxR

zz
bzH

cc

 (50) 

 

In time domain: 

 

( ) ]2[]1[2]2[]1[2][][
2

0 −−−⋅+−+−+= toutRtoutxRtintintinbtout cc  (51) 

 

This would work well except at fast modulation. So we’ll do as above and split )(zH  

into a cascade of complex 1-pole sections. Notice that the order of the numerator 

(zeros) doesn’t matter here since those do not cause instability. We can simply put all 

zeros in the first section: 

 

( )( ) ( )( )11

21

0
1

1

1

21
)(

−−

−−

⋅+−
⋅

⋅−−

++
⋅=

zjyxRzjyxR

zz
bzH  (52) 

 

In time domain: 

 

( ) ( )]1[]1[]2[]1[2][][ 1101 −⋅−−⋅+−+−+= timytrexRtintintinbtre c  (53) 

( )]1[]1[][ 111 −⋅+−⋅= treytimxRtim c  (54) 

( )]1[][][ 1 −⋅+= tlpxRtretlp c  (55) 

 

 

And from there we get our final code for the 2-pole 2-zero LP filter. 

 

 
// in0, in1, in2 are in[t] in[t-1] and in[t-2] respectively 

// lp is the current output lp[t] 

 

x = cos(2.0*PI*wc); y = sin(2.0*PI*wc); 

c = 100*R*R*R+1; Rc = c/(c+y); 

b0 = (1.0-2*Rc*x+Rc*Rc)/4.0; 

temp = re; 

re = b0*(in0 + 2*in1 + in2) + Rc*(x*re - y*im); 
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im = Rc*(x*im + y*temp); 

lp = re + Rc*(x*lp); 

in2 = in1; in1 = in0; 

 

This is not optimized for CPU usage but rather for clear illustration. 

 

Multimode 2-pole 2-zero filter 

Although the main point has been made above. I feel I’d just put a final code of a 

multimode filter. The LP is almost same as above, while we derive the HP and BP 

along the way. Notice here that I put the zeros after the second cascade for easier HP 

and BP derivation. But (for some reason) this results in higher gain at fast modulation 

(it’s still stable).  

 
temp = 2.0*PI*wc; 

x = cos(temp); y = sin(temp); 

c = 100*R*R*R+1; Rc = c/(c+y); 

b0 = (1.0-2*Rc*x+Rc*Rc)/4.0; 

temp = re; 

re = in0 + Rc*(x*re - y*im); 

im = Rc*(x*im + y*temp); 

int0 = re + Rc*(x*int0); 

lp = b0*(int0 + 2*int1 + int2); 

hp = lp - in0; 

bp = y*(int0 - int2);  

 

int2 = int1; int1 = int0; 

 

Arbitrary n-pole m-zero filters 

Using a 2-pole 2-zero filter building block. We can stabilize practically any filter of 

any higher or lower order we like. Suppose we have the following generalized form 

transfer function. 

 

2

2

1

1

2

2

1

10

1
)(

−−

−−

++

++
=

zaza

zbzbb
zH  (56) 

 

Assuming that the coefficients a1 and a2 do not cause any poles to go outside the unit 

circle (i.e stable in the time in-variant case). All we need to know to stabilize this 

using CPS is the roots of the denominator (when equalized to zero). Since this is a 

quadratic equation. The roots are: 

 

2

4

2

4 2

2

11

2

2

2

11

1

aaa
p

aaa
p

−−−
=

−+−
=  

 

Therefore )(zH  can be rewritten as: 

 

( ) ( )1

2

1

1

2

2

1

10

1

1

1
)(

−−

−−

−
⋅

−

++
=

zpzp

zbzbb
zH  
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For a 2-pole filter ( 02 ≠a ), 1p  and 2p  may or may not be a complex conjugate pair. 

The final code is: 
 

tau = (a1*a1-4*a2); 

If (tau>=0)  

{ // Two real roots. No imaginary part 

 sqtau = sqrt(tau); 

// Section 1 

 x = (–a1 + sqtau)/2.0; 

re = b0*in0 + b1*in1 + b2*in2 + x*re; 

// Section 2 

x = (–a1 - sqtau)/2.0; 

out0 = re + x*out0; 

} 

else      

{ // With imaginary parts (Conjugate Pair) 

 sqtau = sqrt(-tau); 

x = –a1/2.0; y = sqtau/2.0; 

// Section 1 

temp = re; 

re = b0*in0 + b1*in1 + b2*in2 + x*re - y*im; 

im = x*im + y*temp; 

// Section 2 

out0 = re + x*out0; 

} 

in2 = in1; in1 = in0; 

 

If you know your poles are always real or always complex, you can disregard one part 

of the if statement above. 

 

For a 1-real-pole filter ( 02 =a ). The code is simply: 
 

// 1 real pole filter 

out0 = b0*in0 + b1*in1 + b2*in2 – a1*out0; 

in2 = in1; in1 = in0; 

 

Notice here that if your design intentionally chooses 1p  and 2p  to be directly 

controlled by your filter parameters without needing the a1, a2 coefficients. Then the 

code above simplifies because x,y are already known from the real,imaginary parts of 

1p  and 2p  without solving for any roots.  

 

A few obvious but rather important notes here. You can stabilize 1-poles or 1-zero 

filters by zeroing out the a2  or the b2 coefficients respectively. And you can stabilize 

no-poles or no-zeros filters by zeroing out the a1, a2 or the b1 , b2  coefficients 

respectively. (Although the no-poles case here is probably useless since such filters 

would be always stable anyway).You can also stabilize higher order n-pole m-zero 

filters by cascading multiple CPS filters using this method (i.e. placing them in 

series). 

 

3. Pole-Zero to TPT Converter 
If your not comfortable using complex numbers in the CPS method but still like to do 

pole-zero design. There is a rather indirect way to convert any Z-domain pole-zero 

filter to a TPT filter and essentially stabilizing it in fast modulation. Although this 
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method is a bit lengthy, the most interesting thing about it is that it yields different 

sounds in fast modulation!!. In fact very different. The sounds you get from TPT are 

particularly smoother while CPS generates more aggressive and hard tones.  

 

The method is as follows: 

 

1. Apply inverse Bilinear Transform to the Z domain transfer function you have 

to bring to the analog S domain. 

2. Equalize the resultant transfer function coefficients with an already known 

stable analog topology that has the same (or more) number of poles and zeros. 

Granted we already have digitized the topology (using Trapezoidal 

Integration) and got the code for it. This would undo the inverse Bilinear 

Transform we did in step one so the filter would stay the same when digitized. 

3. Solve the equations you got to get the Z domain to TPT substitutions. 

 

I’m going to do this in a general purpose form for a 2-pole 2-zero transfer function to 

serve as a building block for higher and lower order filters. Suppose we have the 

following Z-domain transfer function. 

 

2

2

1

1

2

2

1

10

1
)(

−−

−−

++

++
=

zaza

zbzbb
zH  (57) 

 

If your wondering why there isn’t an a0 coefficient, it’s because you can always 

eliminate one of the coefficients dividing the numerator and denominator over it. So 

no need to add it from the beginning. 

 

So first we’re going to apply inverse Bilinear Transform. Recall from equation (13). 

We need to invert that to get z
-1

. Doing that we get: 

 

s

s
z

+

−
=−

2

21
 (58) 

 

Substituting in (57) to get it in the analog S domain: 
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
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s
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s

s
b

s

s
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zH  (59) 

 

Simplifying and rewriting it in polynomials form: 

)1(4)1(4)1(

)(4)(4)(
)(

212

2

21

21020

2

210

aasasaa

bbbsbbsbbb
sH

+++−++−

+++−++−
=  (60) 

 

I’m going to divide both stories over )1( 21 aa +− to eliminate s
2
 coefficient in the 

denominator. We’ll call it τ . You’ll see why in a moment. 

 

)1( 21 aa +−=τ  (61) 
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)1(
4

)1(
4

)(
4

)(
4

)(
1

)(

212

2

21020

2

210

aasas

bbbsbbsbbb

sH

+++−+

+++−++−
=

ττ

τττ  (62) 

 

 

Now step 2. We are going to equalize the coefficients here to the coefficients of a 

TPT structure of the same order that we know is stable. We can actually use the same 

topology we used in Figure 1. The transfer functions of HP, BP and LP happens to be 

the following: 

 

22

2

2
)(

gRgss

s
sHP

++
=  (63) 

 

22 2
)(

gRgss

gs
sBP

++
=  (64) 

 

22

2

2
)(

gRgss

g
sLP

++
=  (65) 

 

We know (from LTI linearity) that when we sum transfer functions together, the result 

is simply the mix (sum in time domain) of those three filters. So what if we sum all 

three while scaling them to our liking. So we can define a new transfer function G(s) 

 

)()()()( 210 sLPcsBPcsHPcsG ++=  (66) 

 

22

2

222122

2

0
222

)(
gRgss

g
c

gRgss

gs
c

gRgss

s
csG

++
+

++
+

++
=  (67) 

 

Therefore: 

 

22

2

21

2

0

2
)(

gRgss

gcgscsc
sG

++

++
=  (68) 

 

(A very similar approach to (66) (67) and (68) can be found in the book section 4.7) 

 

We want G(s) = H(s). Ding so, we have to equalize all coefficients in (62) with 

coefficients in (68) and solve for g , R ,
0c , 1c  and 2c . Without too much detail, the 

final substitution we get: 

 

 

From denominator: 

)1( 21 aa +−=τ ,   )1(
4

21 aag ++±=
τ

,    )1(
2

2a
g

R −=
τ

 

From numerator: 
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)(
1

2100 bbbc +−=
τ

,   )(
4

201 bb
g

c −=
τ

,   )(
4

21022 bbb
g

c ++=
τ

 

 

Notice here that there is actually no need to do the frequency pre-warp (tan() thing) as 

before. Because what ever warping that has been done with the time domain 

trapezoidal integration, would have already been undone with the inverse Bilinear 

Transform in the frequency domain.  

 

A few obvious but rather important notes here. You can do 1-poles or 1-zero filters by 

zeroing out the a2  or the b2 coefficients respectively. And you can do no-poles or no-

zeros filters by zeroing out the a1, a2 or the b1 , b2  coefficients respectively. 

(Although the no-poles case here is probably useless since such filters would be 

always stable anyway).You can also do higher order n-pole m-zero filters by 

cascading multiple filters using this stabilizer method. 

 

A few things to watch for. Your coefficients should not cause τ to equal to zero 

otherwise you’d have a division over zero. Also your coefficients should not cause 

what’s under the square root in )1(
4

21 aag ++±=
τ

 to be negative, unless you 

specifically want to deal with imaginary numbers for a certain reason. 

 

Final code: 

 
/* in, out: Input and Output 

a1, a2, b0, b1, b2 are the coefficients of your Z-domain transfer 

function that you want to stabilize using TPT 

m1, m2 are state/memory variables 

All other variables are just temporary storage 

*/ 

 

tau = 1-a1+a2; 

g = sqrt((4/tau)*(1+a1+a2)); 

R = 2*(1-a2)/(g*tau); 

c0 = (b0-b1+b2)/tau; 

c1 = 4*(b0-b2)/(g*tau); 

c2 = 4*(b0+b1+b2)/(g*g*tau); 

   

g = 0.5*g; 
hp = (in-(g + 2*R)*m1 - m2)/(g*g + 2*g*R + 1);  

bp = g*hp + m1;  

lp = g*bp + m2; 

m1 = g*hp + bp;  

m2 = g*bp + lp; 

out = c0*hp + c1*bp + c2*lp;  

 

I’ll leave CPU optimization for you. 

 

 

4. CPS BIBO Stability 
Here we present a proof for the stability of the Complex 1-Pole Section system under 

fast modulation of filter parameters.  
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Requirements 

A signal is bounded if a finite 0≥B  exists such that the signal magnitude never 

exceeds B. In otherwords: 

 

tBty ∀≤][  (69) 

 

We have to show that the discrete time variant CPS is BIBO stable (Bounded Input 

Bounded Output stable). A sufficient condition for this is to prove that every bounded 

input produces a bounded output given the system has zero initial conditions (or at 

least bounded initial conditions). 

 

We know that: 

 

∑
∞

−∞=

≤
k

kyty ][][  (70) 

 

If we prove the summation to be bounded, we have proved y[t] to be bounded. It so 

happens that this is easier to prove than directly proving boundedness of y[t] itself. 

Essentially, We have to show that: 

 

∞<≤∑
∞

−∞=

Bky
k

][  (71) 

 

In other words, we have to prove that y[k] is absolutely sumable. Note: If this was an 

LTI system. Then it would have been a bit easier. We only had to prove that the 

impulse response is absolutely sumable. But this is not the case here. 

 

Definitions and assumptions 

The input signal is x[t] and output is y[t]. xre[t], xim[t] are the real and imaginary 

parts of x[t] respectively. re[t], im[t] are the real an imaginary parts of y[t] 

respectively 

 

The output of the CPS is defined as: 

 

( )]1[])[sin(]1[])[cos(][][][ −⋅−−⋅⋅+= timtwtretwtRtxretre  (72) 

 

( )]1[])[sin(]1[])[cos(][][][ −⋅+−⋅⋅+= tretwtimtwtRtximtim  (73) 

 

R[t] is the time-variant radius (resonance). Assuming 1][0 <≤ tR . And w(t) is the 

time-variant angle (cutoff). We also define ][th as the scaled impulse response and 

define ][thre  and ][thim  as the real and imaginary parts of ][th  respectively. To get 

the scaled impulse response, we set the input x[t] to an arbitrary complex scaled 

impulse as follows: 
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( )
( )

00

0
][][

≠

=+
=+=

t

tjmr
tjmrtx δ  (74) 

 

In other words: 

00

0
][][

≠

=
==

t

tr
trtxre δ  

00

0
][][

≠

=
==

t

tm
tmtxim δ  

 

From (72) and (73) we can see that the only necessary initial conditions to calculate 

]0[hre  and ]0[him  (and hence ]0[h ) are ]1[−hre  and ]1[−him . Therefore, we assume 

the system has finite arbitrary initial conditions at ]1[−hre  and ]1[−him . For 1−<t  

we assume the system has zero initial conditions (or at least bounded initial 

conditions). 

 

For 0>t . From (72) and (73): 

 

( )]1[])[sin(]1[])[cos(][][ −⋅−−⋅⋅= thimtwthretwtRthre  (75) 

 

( )]1[])[sin(]1[])[cos(][][ −⋅+−⋅⋅= thretwthimtwtRthim  (76) 

 

Proof 

The magnitude of the scaled impulse response ][th  is 

 

][][][ thimjthreth ⋅+=  (77) 

 

22 ][][][ thimthreth +=  (78) 

 

Expanding: 

 

( )( ) ( )( )22
]1[])[sin(]1[])[cos(][]1[])[sin(]1[])[cos(][][ −⋅+−⋅⋅+−⋅−−⋅⋅= thretwthimtwtRthimtwthretwtRth

 

Simplifying: 

 

( ) ( )( )222222 ])[sin(])[cos(]1[])[sin(])[cos(]1[][][
2

twtwthimtwtwthretRth +−++−=  

 

Since 1])[sin(])[cos(
22 =+ twtw  

 

22 ]1[]1[][][ −+−= thimthretRth  (79) 

 

Side note: the scaled impulse response magnitude is independent of w(t) (cutoff) 

changes 

 

Notice, that the square root term on the right is essentially the magnitude of ]1[ −th . 

Check (78). So we can rewrite (79) as: 
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]1[][][ −⋅= thtRth  (80) 

 

We can expand this back to h[0]. 

 

]0[][][
1

hiRth
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=

 (81) 

 

It is easy to see from here that: 

 

1][00][lim
1

<≤=∏
=

∞→
iRiR

t

i
t

 (82) 

 

But for the sake of clarity, we define Rm to be the maximum of R[t] for all t. So 

t

m

t

i

RiR ≤∏
=1

][ . Therefore, from (81) 

 

t

m

t

i
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
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From here, we know that: 

 

( ) 100]0[lim <≤=
∞→

m

t

m
t

RRh  (84) 

 

Therefore, using (83) and (84): 

 

0][lim =
∞→

th
t

 (85) 

 

And since ]0[h  is finite because it is a function of the finite initial condition ]1[−h  

from (80). So using (83), ][th  will also be finite for all 0>t  since 
t

mR  is finite. 

Notice that ][th  has also been assumed zero (or bounded) for all 1−<t . These three 

conclusions along with (85) essentially guarantee that ][th  is sumable. Which means 

that there exist B such that 

 

∞<≤∑
∞

−∞=

Bkh
k

][  (86) 

 

This proves that the output signal ][th  is bounded. Which proves that the output 

signal ][ty  is bounded when the input is a scaled impulse ( ) ][tjmr δ+  assuming the 

CPS system has finite initial conditions at ]1[−y  and zero (or bounded) initial 

conditions for 1−<t . 

 

Now, any input ][tx  can be expressed as a sum of scaled impulses as follows: 
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∑
∞

−∞=

−⋅=
k

ktkxtx ][][][ δ  (87) 

 

For every t. A scaled impulse of ]0[][ δ⋅tx is input while the CPS system has an initial 

condition of ]1[ −ty . In other words, ][tx  is nothing but repeated differently scaled 

impulses. We've already showed that the response of the CPS system for such 

impulses is bounded. Which means that ][ty  is bounded and it is used as an initial 

condition for ]1[ +ty  which is bounded as well. And is in turn used as initial 

condition for ]2[ +ty  and so on until ][ ∞+ty . Therefore, there exist B such that 

 

tBkyty
k

∀∞<≤≤ ∑
∞

−∞=

][][  (88) 

 

Which is what we wanted to prove. 


