
SoloRack SDK v0.11 Beta

Documentation

Dependencies and prerequisites
1. A C++ compiler. (Preferably VC++, I haven’t tested other compilers yet).
2. VSTGUI version 3.6. (Already included). Also available here:

https://sourceforge.net/projects/vstgui/files/vstgui/VSTGUI%203.6/

Note: VSTGUI is released under a completely different license than
VST™. VSTGUI is open source and doesn’t require a signed
agreement. The license can be found in its source code files.

Creating your first module
The whole SDK code is wrapped in a single Visual C++ project with few test
modules that you can edit to create your own modules. If you don't have VC++,
there is a free version called "Visual Studio Community edition". Or if you’re like
me who likes old and CPU light software, "Visual Studio 2008 Express" is an
option. There is still an official download link for it floating around. The following
applies to VC++ users.

1. First make sure you have the latest version SoloRack.

2. Obviously extract the SDK. A folder named “SoloRack SDK v0.11” will be
created.

3. In the "vstgui patch" folder. You'll find 4 files that are my modified versions of
the vstgui.h, vstgui.cpp, vstcontrols.h and vstcontrols.cpp. Copy these to the
"vstgui" folder to replace the existing ones. (You may want to backup the
originals).

I tried to keep my changes to vstgui minimal. If you want to know what changes I
did, just search for "ammar" inside any of these 4 files and you'll find some
comments that indicate each and every change I made.

Note here these 4 files mentioned above are not considered part of the
SoloRack SDK. These are modified from VSTGUI and so, still are
distributed under the VSTGUI license which you can read clearly inside
those files. I DO NOT claim to be the author of these files.

4. Copy the TestModules folder to the Modules folder where SoloRack.dll
exists. In case you are using SoloRack 64bit, then copy TestModules.x64 to the
Modules.x64 folder where SoloRack.x64.dll exists.

5. Copy the Skin to the TestModules (or TestModules.x64) folder you just
copied.

6. Open the project/solution file TestModules.sln in VC++. It will probably ask
you to convert the project to your newer version (since I use an old version,
Visual Studio 2008).

7. Go to [project properties] > [General] > [Windows SDK version], make sure
you select the latest version listed (like 10.x) instead of 8.1.

8. Make sure you choose the release platform you want (i.e. x64 or Win32 (x86)).
Then Compile/Build it. This should produce the TestModules.dll (or
TestModules.x64.dll) which contains all of the test module(s).

9. After a successful compilation. Copy the TestModules.dll file to the Modules
folder where SoloRack.dll exists. In case you are using SoloRack 64bit, then the
dll is TestModules.x64.dll. It should be copied to the Modules.x64 folder where
SoloRack.x64.dll exists

10. Start SoloRack and you should see the example test modules placed in the
modules menu (Currently there is a mixer and tempo from DAW module).

The TestModules.ini contains basic information about the modules contained in
the TestModules.dll file. SoloRack reads these .ini files when it starts instead of
scanning/loading each dll in the modules folder which can cause crashes and
delays in load time. Developers are responsible of providing an .ini for each dll
they distribute. The ini file should have the same file name as the dll but
obviously with a .ini extension instead of a .dll.

Also a user may edit an ini file to hide some modules that he/she doesn't want to
use or change the order in which they appear in the menu.

Classes provided
SoloRack inherits most of its C++ classes from VSTGUI. The Module class
inherits from CViewContainer and adds audio processing functions to it that will
be called by the audio thread. Other classes include, PatchPoint, ModuleKnob,
ModuleKnobEx, CKickButtonEx, CMovieBitmapEx, CSpecialDigitEx and
Product.

Programming interface
Static functions of your module(s) are reached by SoloRack using the pointers
stored in the DllModule struct. Virtual functions of your module are reached
using a wrapper class that forces the correct vtables to be inherited.

On the other hand, your modules can talk to SoloRack using the function pointers
stored in the SynthComm struct (use the synth_comm variable).

The following functions need to be implemented by your Dll modules. These are
called by SoloRack (Except for Initialize() and End() which should be called by
your Dll). If you don't implement some of the functions, there is usually a default
behaviur function that is called automatically. These defaults are defined in the
parent Module class.

• Initialize()
This is the first function that should be called for each module after your Dll is
loaded. Common or global preparation and initialization should be performed
here, like for example allocating bitmaps and memory that will be used by all
instances of a module.

Calling this function is the responsibility of your Dll. Typically call it inside
DllInitialize() which SoloRack calls after DllMain() is called at the process attach.

• End()
This is the last function called before the Dll is unloaded from SoloRack memory.
Destruction and freeing of common or global memory should be done here.

Calling this function is the responsibility of your Dll. Typically call it inside
DllMain() at the process detach.

Mandatory functions
The following is a list of the most important functions that MUST be implemented
by your modules. These are called by SoloRack when needed.

• Constructor()
Because there is no direct way in C++ to get a pointer to a class constructor. This
function should be implemented to create a new instance of a module and return
it back to SoloRack.

• GetName()
Should return a string (char *) that indicates the full name of the module. This
name combined with your vendor name constitutes a unique identifier for your
module.

• GetNameLen()
As the name suggests

• GetVendorName()
Should return a string that indicates your vendor (company) name. This name

combined with the module name constitutes a unique identifier for the module.

• GetVendorNameLen()
As the name suggests

• GetVersion()
Should return the version number of the module. This number is automatically
saved with presets. And given back to the module when opening a preset using
LoadPreset(). This will allow you to achieve backward compatibility with presets
that has been saved with an older version of your modules.

• GetType()
This function is called by SoloRack and must be implemented in your module. It
Returns the module type. Used to categorize it in the module menu. The
following types are provided:

kMixerPanner

kFilter,

kOscillatorSource,

kAmplifier,

kModulator,

kModifierEffect,

kClockGate,

kSwitch,

kCVSourceProcessor,

kFromToDAW,

kSequencer,

kLogicBit,

kMIDI,

kOther

These types are also used in the .ini file but without the “k” in-front of each type.
For example, say "VCF1" and "VC SEM" are two filters and "Rad Reverb" is an
effect. The Ini file would look something like this:

[Configuration]

Vendor = Your Company or Author Name

[Filter]

number_of_modules=2

M1 = VCF1

M2 = VC SEM

[ModifierEffect]

number_of_modules=1

M1 = Rad Reverb

• Activate()
Tries to activate the module given license information parameters. You can just
return NULL if this is not relevant.

• IsActive()
Checks and returns true only if the module is active (licensed). Otherwise,
returns false.

• GetProductName()
Should return your own product name for the module. Product names should
include the vendor name to avoid conflicts with other vendor modules in the
config.ini

Optional Functions
The following is a list of most of the virtual functions that can be implemented by
your modules. These are called by SoloRack when needed. However, you may
choose to leave some of them unimplemented, as thier functionality may not be
required by your module(s), In this case, the parent (Module class) version will be
called. Which in many cases, just does nothing.

• ProcessSample()
This is the one and only audio processing function. It should take values from the
input patch points. Process them, and put the output values to the output patch
points. This is done sample by sample. That is, each time ProccessSample() is
called, it should process only one value (sample) which exist at the inputs.

This function is time critical as it is called at audio rate. It's essential that you try
to optimize it as much as possible. Lengthy pre-calculations should be left
outside if possible. Function calls should be minimal. Inlining may speed up
things, but note that your compiler may not listen to your inline keywords. Infact,
VC++ doesn't inline most of the time (as far as my tests go). I some times prefer
preprocessor macros, as they are guaranteed to stay inline.

This function automatically takes ownership of the audio critical section before it's
called to assure mutual exclusion when two events happen that need to access
the same data. For example, when a cable is disconnected. This function will not
be called until the disconnection is finished and all related modules informed.

• ProcessEvents()
Tihs is called whenever the DAW sends an event (like a MIDI note, etc) to
SoloRack. Note that your module has to call CallProcessEvents() once to
inform SoloRack that it needs to process DAW events. Otherwise, SoloRack will
NOT call this function for your module. This is done to minimize CPU, as most
modules will not need to process DAW events. You typically call
CallProcessEvents() in the constructor.

This function automatically takes ownership of the audio critical section before it's
called. In other words, this function will not be called while ProccessSample() is
executing. And ProccessSample() will not be called while this function is
executing. i.e, they are mutually exclusive.

• StartOfBlock()
Every time the DAW calls processReplacing() in SoloRack (which processes a
block of samples). SoloRack will call StartOfBlock() once for every module that
requires this functionality. To indicate this, your module has to call
CallStartOfBlock() once. Typically called in your constructor.

This function gives a chance for your module to do work that it may not need to
do so often (i.e not at audio rate). Like for example calling, the SynthComm
GetDAWTime() function to get sync and tempo information. Or doing heavy
calculations that doesn't have to be done at the audio sampling rate.

This function will be called before the first ProccessSample() is called at the start
of the block.

• CableConnected()
Whenever a new cable is connected to one of a module's patch points. This
function will be called. This gives your module a chance to precalculate and do
necessary changes. Note that this call takes ownership of the audio processing
critical section. So it's safe to assume that ProcessSample() is not running while
CableConnected() is being executed.

• CableDisconnected()
Whenever a cable is disconnected from a module's patch point. This function will
be called. This gives your module a chance to precalculate and do necessary
changes. Note that this call takes ownership of the audio processing critical
section. So it's safe to assume that ProcessSample() is not running while
CableConnected() is being executed.

• SetSampleRate()
This is called whenever SoloRack's internal sampling rate changes. It changes
when either the DAW sampling rate changes or SoloRack's oversampling
settings changes. This gives the module a chance to recalculate relevant
information.

Note that if your module has band limiting features (like a VCO). This function
should call SetBandLimit() to accommodate for the change if required, or at least
do necessary calculations inside SetSampleRate itself.

This function takes ownership of the audio processing critical section. So it's safe
to assume that ProcessSample() is not running while this function is being
executed.

• SetDAWSampleRate()
This is almost exactly like SetSampleRate() with the difference that it’s only
called when the sample rate change happens in the DAW. And Its always called
before SetSampleRate() is called.

• SetDAWBlockSize()
Called wherever DAW block size changes.

• ValueChanged()
This is called whenever a control (knob, switch, etc..) value has changed either
by the user or by DAW automation. This is the only function where
ProcessSample() may be running WHILE this function is running. To ensure that
this doesn’t happen, you have to manually take ownership of the audio
processing critical section by calling EnterProcessingCriticalSection() inside this
function. You have to also call LeaveProcessingCriticalSection() when you are
finished, otherwise audio processing will hang!!.

I could have done this automatically. But I finally decided to leave it to the
developer to decide for performance reasons. Because DAW automation may
cause multiple frequent calls to this function which will cause ownership of the
critical section to be taken so frequently that it may affect audio processing and
lead to buffer underuns in the worst case.

• SavePreset()
This is called when a preset is to be saved, giving a chance for the module to do
it’s own none-default saving. The function is given an empty buffer (chunk)
allocated by SoloRack to save it's data. SoloRack will know the required buffer
size by calling GetPresetSize() in your module which should return the size
required.

When this function is not implemented, the default SavePreset() in the Module
class calls SaveControlsValues() which automatically saves all control values
(knob, switch, etc.. values) in the module.

If you want to change this default behavior, you should implement this function.
Ofcourse you can make calls to SaveControlsValues() inside your own
SavePreset() and add your own special data to the buffer.

Note: the order in which SaveControlsValues() saves the control values is related
to the order in which the VSTGUI addView() function was called in your
constructor. This is important, because in latter versions of your Module, if you

change that order, then loading old presets would not work correctly, you have to
correct that by checking the version number of the preset. This is possible. But its
offcourse prefered that you don't change that order in latter versions so that
backward compatibility becomes easy for you.

• LoadPreset()
This is called when a preset is to be loaded, giving a chance for the module to do
it’s own none-default loading. The function is given a data buffer (chunk)
allocated by SoloRack which contains the preset data to be loaded. The size of
the data is given too. Also the version number of the module that originally saved
the preset will be given. You can check the version number to achieve proper
backward compatibility.

When this function is not implemented, the default LoadPreset() in the Module
class calls LoadControlsValues() which automatically loads all control values
(knob, switch, etc.. values) in the module.

If you want to change this default behavior, you should implement this function.
Ofcourse you can make calls to LoadControlsValues() inside your own
LoadPreset() and still load your own special data from the data buffer.

Note: the order in which LoadControlsValues() saves the control values is related
to the order in which the VSTGUI addView() function was called in your
constructor. This is important, because in latter versions of your Module, if you
change that order, then loading old preset would not work correctly, you have to
correct that by checking the version number of the preset. This is possible. But its
off-course preferred that you don't change that order in latter versions so that
backward compatibility becomes easy for you.

• GetPresetSize()
This is called just before SavePreset() is called. Your module should return the
exact size (in bytes) of how much memory should SoloRack reserve for your
module’s preset/data.

• GetInfoURL()
This should return a string containing a URL that points to a web page that
provides more information/documentation for the user about your module.

• GetAlwaysONDefault()
By default, to save CPU, SoloRack stops audio processing a module if it's no
longer connected by any cable. The user can change that behavior by right
clicking and choosing "Always ON". This function provides the default value for
this option.

In other-words, this function should return true only if the module (by default)

requires ProcessSample() to be called all the time regardless of whether or not
the module is connected. This is useful for example, for modules that have visual
feedback that is constantly changing like LFO LEDs, scopes, or modules that are
time dependant.

• IsAudioToDAW()
Should return true if the module can send Audio/CV to the DAW, otherwise it
should return false. SoloRack needs to know this beforehand for it's internal
preparation.

• InstanceActivate()
Is just an instance version of the static function Activate() mentioned above. This
is to make things easier when activating by right click.

• InstanceIsActive()
Is just an instance version of the static function IsActive() mentioned above.

• AddDemoViews()
This is part of the activation system. It gives a chance for the module to make
any internal preparation including any visuals that need to be displayed when
demo mode is enabled.

• SetEnableDemo()
This is part of the activation system. It is called whenever demo mode needs to
be enabled or disabled.

• SetBandLimit()
This is called when the user changes the "band limit" choice in the module right-
click menu. This is meant mainly for VCOs and sound sources that provide
internal anti-aliasing features. Your module should decide what to do with it. The
two options currently available are "At oversampling nyquist" and "Near DAW
nyquist".

• PolyphonyChanged()
This is called whenever the user changes the number of voices in the main menu

• onMouseDown()

• onMouseUp()

• onMouseMoved()
These come from VSTGUI. The default implementation calls SoloRack internal
functions through the synth_comm variable. You can add you custome handling
here. But you better also keep calling SoloRack's own functions because
otherwise your modules won't respond to mouse correcrtly.

• OnMouseMovedObserve()
This one is NOT from VSTGUI. It allows your module to monitor (observe) mouse

movements even when the mouse is not hovering on top of the module. To let
SoloRack call this, you have to call CallMouseObserve() once.

• GetIsMonoDefault()
Should return false only if you want your module to be a polyphonic module by
default.

• ConstructionComplete()
This function is called by SoloRack after all constructors of all voices of a module
is called. And after all solorack specific information like index, procindex, etc...
has been setup. This is where GetVoiceModule() will start working. The purpose
of this function is to give your module a chance to do initialization work that is
global for all voices.

• DestructionStarted()
This function is called by SoloRack for all voices of a module just before
destructors are called for all voices of that module. This will give you a chance to
do clean up work that is global for all voices.

This also gives a chance for odd/special type of modules that cannot imidiatly
destruct, for example in case the module is running a high CPU worker thread
that needs to be stopped, or is connecting to the network. The idea here is to
give all modules a quick heads up, then atempt to destruct them one by one. This
allows those odd/special modules to end their lengthy work WHILE solorack
destructs other modules.

• IsPolyManager()
A poly manager module is one that is responsible for chaining polyphonic events
to all voices in a polyphonic patch. This chaining is done either through MIDI or
CV patch points. The pnext variable has to be used for this purpose. Each patch
point points to the next patch point in the chain. The “SD05 MIDI Poly Chainer” is
a poly manager.

This function should obviously return true if your module is a poly manager.

Helper Functions
The following list of functions are already implemented and are meant to make
your life a bit easier. These are NOT called by SoloRack. They are for your own
use.

• PutLeftScrews()

• PutRightScrews()
As the name suggest. Just try them.

• InitPatchPoints()
Goes through all the patch points you added to your module and sets the values
of In and out to given value.

• EnterProcessingCriticalSection()

• LeaveProcessingCriticalSection()
These two function are used to deliberately enter and leave SoloRack's audio
critical section. While your thread is inside the critical section (ie. taking owner
ship of it). ProccessSample() is guaranteed to NOT be called.

You only need those two functions inside ValueChanged() or inside onMouse..()
functions. You don't need them for any other functions like CableConnected() or
CableDisconnected(), Destructors, ProccessEvents(), StartOfBlock() etc.. since
all these are all guaranteed to not be called while ProccessSample() is executing.

Obviously, you don't need to call these two functions either if your not accessing
data that is shared between the audio and GUI thread. Also remember that most
primitive types are atomic on many systems. So, sometimes you can getaway
even if you are accessing shared data.

• UpdateSValue()
This is part of ModuleKnob class. It’s meant to be use for parameter smoothing.
It will take value variable of the knob and smooth it’s changes and put the output
in svalue variable.

• UpdateSValueReached()
Same as UpdateSValue() but returns a boolean. True only when svalue
becomes equal to value.

• ModuleKnobExPool class
This class is solely meant for CPU performance. When you have too many knobs
in your module that require smoothing. It is more CPU efficient to use this pool
class than the UpdateSValue() functions. Read the comments in the code on
how to use it.

• GetCurrentStep()
This is part of ModuleKnob class. Used for stepping knobs, not continuous
knobs. i.e. If the knob has the is_stepping variable equal to true. This function
can be used to return the step number. Which ranges from zero to subPixmaps-
1.

• SendAudioToDAW()
This is actually a set of overloaded functions. There are 5 of them. The main
reason for having so many is mainly CPU usage efficiency.

• ReceiveAudioFromDAW()
Another set of overloaded functions for getting audio/CV from the DAW.

• SetKnobsSmoothDelay()
You can use this to set the how long the parameter/knob smoothing takes.

• GetVoiceModule()
When your module is set to polyphonic mode, this function returns a pointer to a
specific voice module that you request. This allows you for example, to control all
voices from one voice zero. Or do customized behavior per voice.

• AddPatchPoint()

• AddMIDIPatchPoint()

• AddModuleKnob()

• AddVerticalSwitch()

• AddMovieBitmap()

• AddKickButton()

• AddOnOffButton()

• AddSpecialDigit()

• AddSpecialDigitEx()

• AddModuleKnobEx()

• AddTextLabel()

• AddHorizontalSlider()
This collection of functions are to simplify adding controls to your modules. They
automatically implement DAW automation. You can however if you want, use
VSTGUI directly and add your own controls or customized controls.

• GetFreeTag()

• RegisterTag()

• UnRegisterTag()
These three functions are meant to support DAW automation of your
parameters/controls. You don’t need them most of the time if you use the earlier
mentioned Add…() functions.

• SetForceMono()
Used to force a patch point to be mono regardless if the module was mono or
not!!

• ClearIfOrphaned()
Should only be called in the destructor or just before it.

SoloRack calls forget() when the user wants to delete modules. forget() will
destruct and delete the module if nbReference==0. That is, nothing else left
thats pointing to that module. But in very odd cases, you may not want to
imidiatly destruct your module after it's been deleted. For example, with modules
that connect to the network or have worker threads activly working. This can be
done calling remmember() early, then calling forget() when work has finished and
you are ready to destruct. However, during this "hanging there period" SoloRack
will realise that the module didn't destruct because forget() didn't return true. So
SoloRack will put the module into an orphaned list that will be forced to destruct
at SoloRack exit.

This ClearIfOrphaned() function tells SoloRack that this module has gracefully
been detructed by you. So if it's in the orphaned list. SoloRack will remove it and
not try to destruct it on synth exit.

You HAVE to call this function if you automatically destruct your modules later
(using forget()). Otherwise SoloRack WILL CRASH on synth exit. Because it will
try to decontruct your modules which doesn't exist any more in memory.

• GetDAWBlockSize()
Returns the current DAW block size in samples.

• GetDAWSampleRate()
Returns the current DAW sample rate.

SynthComm Functions
The SnythComm structure contains pointers to internal SoloRack functions that
give you a way to communicate with the synth. The synth_comm variable is
already initialized for that purpose and can be used directly by your modules.

• GetSynthSDKVersion()
Get the SDK version that SoloRack was built on.

• GetEditor()
This will return a pointer to SoloRack’s editor. This function is already called for
you in Module constructor. The editor pointer is put in the variable peditor. You'll
need this pointer if you want call some of the following functions.

Some of those functions have the same name and functionality as some helper
functions mentioned above. This might seam like an unnessesary redunduncy.
But It's done this way on purpose.

• GetSynth()
Returns a pointer to the SoloRack synth itself. This is not usefull unless you have
a VST2 license and therefore can treat the returned value as a VST2 synth. You

will not need it any way as the other functions already cover many needs.

• GetOversamplingFactor()
The oversampling factor is the ratio sample_rate / DAW_sample_rate. The user
chooses this.

• GetVoiceModule()
This is similar to the helper function mentioned above. Infact the helper is a short
cut to this.

• GetPolyphony()
Returns the current number of voices.

• ClearIfOrphaned()
This is the same as the helper function mentioned above. Infact the helper is a
short cut to this.

• GetDAWBlockSize()
Returns the current DAW block size in samples directly from SoloRack. This
value is already stored in a Module variable that you can read using the helper
function named with the same name GetDAWBlockSize()

• GetDAWSampleRate()
Returns the current DAW sample rate directly from SoloRack. This value is
already stored in a Module variable that you can read using the helper function
named with the same name GetDAWSampleRate()

• GetDAWTime()
Provides a way to get information about current DAW timing. Like ppq position.
Tempo, time signature etc..

Events Handling
The following few functions are meant to be used inside ProcessEvents(). They
are mostly self explenatory when you look at the SDK code.

• GetNumberOfEvents()

• GetEventsArray()

• GetEventType()

• GetEventTime()

• GetMIDIEventMessage()

• GetMIDISysExSize()

• GetMIDISysExMessage()

Other SynthComm functions
There are many other functions that relate to mouse and patch point handling.

Many of those are used by some helper functions or other GUI functionalities.
You don't need to explicitly use them most of the time.

A word on ABI compatibility
The ABI (Application Binary Interface) is very dependant on the compiler. Since
we can’t control possible future compiler changes, this means that we can’t
guarantee ABI compatibility between SoloRack and your Dll modules if both don’t
use the same compiler version. In other words, a deep compiler change could
possibly break ABI compatibility. Furthermore, if we’re not careful, changes to the
SDK API itself can break the ABI compatibility. Well that’s, in theory.

Having said that, that doesn’t mean we can’t do something about this that would
minimize the possibility of that happening. Otherwise, technologies like COM
won’t work. The SoloRack SDK uses the following methodology:

1. Newer functions/variables added to the API in later versions are only added to
the END (i.e tail) of Module and ModuleWrapper classes. This is crucial because,
(for historical reasons), it seams that most if not all compilers keep the order of
the binary interface as it is mentioned in the C/C++ definitions/declaration. So
when we add to the END, we are almost sure that all past code doesn’t have to
change.

2. When SoloRack launches your module. It calls the C interface exported
function GetDllModule() .This should return the SDK version number (among
other things) that was used to build your module. If it’s a version lower than the
one SoloRack is running on, SoloRack will make sure it doesn’t call any newer
functions that your module’s SDK doesn’t support. If it’s a version higher than the
one SoloRack is running on, then the module is NOT launched and the user is
informed to download the latest SoloRack.

The above is what WE have to do. Here is what YOU have to do to make sure
your Modules don’t break the ABI.

1. Never modify the “ModuleWrapper.h” file or the "ModuleWrapper.cpp" file.

2. If you want to add functions or variables to the Module class. The safest way
to do so is to derive a new base class from the Module class. Add your functions
and variables to it. Then create your own modules deriving from that new base
class you created.

3. If for any reason you don’t want to make a derived class but you want to add
your own functions and variables directly to the Module class. Then you have to
add those to the END (i.e tail) of the class declaration. The point here is, ORDER
IS RELEVANT. If you change the order in which functions or variables appear.
You are most likely going to break ABI compatibility.

Note: If I’m not mistaken, internally in memory, the END (tail) for virtual functions
is different than the END for variables. They're stored in different locations. In
other words, you can consider them as two separate lists. Even though they are
listed in one place in the Module.h file.

In the worst case, If a future update to the SDK does break the ABI because of
major changes. Then the normal remedy would be to just recompile your
modules using the newer SDK version.

Now things get more complicated when you use different compilers. Destructors
and operators are implemented differently and so can break the ABI too. This is
still left for future work. Currently the SDK is only tested and ready for Microsoft
VC++ compiler.

Ammar Muqaddas
Copyright (C) SoloStuff 2022.
All rights reserved.
www.solostuff.net

